To solve for the variable [tex]\(P\)[/tex] in the simple interest formula [tex]\(I = P \cdot r \cdot t\)[/tex], follow these steps:
1. Identify the given formula:
The given formula is [tex]\(I = P \cdot r \cdot t\)[/tex], where:
- [tex]\(I\)[/tex] is the interest,
- [tex]\(P\)[/tex] is the principal,
- [tex]\(r\)[/tex] is the rate,
- [tex]\(t\)[/tex] is the time.
2. Isolate the variable [tex]\(P\)[/tex]:
To solve for [tex]\(P\)[/tex], we need to isolate [tex]\(P\)[/tex] on one side of the equation. Start by rewriting the formula:
[tex]\[
I = P \cdot r \cdot t
\][/tex]
3. Divide both sides by [tex]\(r \cdot t\)[/tex]:
To isolate [tex]\(P\)[/tex], divide both sides of the equation by [tex]\(r \cdot t\)[/tex]:
[tex]\[
P = \frac{I}{r \cdot t}
\][/tex]
So, the formula for [tex]\(P\)[/tex] when isolated is:
[tex]\[
P = \frac{I}{r \cdot t}
\][/tex]
Thus, the correct choice from the given options is:
[tex]\[
P = \frac{I}{r \cdot t}
\][/tex]