In the simple interest formula, [tex][tex]$I = P r t$[/tex][/tex], solve for the variable [tex]$P$[/tex].

Note: In this formula, [tex]$P$[/tex] represents principal, [tex][tex]$I$[/tex][/tex] is interest, [tex]$r$[/tex] is rate, and [tex]$t$[/tex] is time.

A. [tex]$P = \frac{I}{r t}$[/tex]
B. [tex][tex]$P = \frac{I r}{t}$[/tex][/tex]
C. [tex]$P = \frac{I t}{r}$[/tex]
D. [tex]$P = I r t$[/tex]



Answer :

To solve for the variable [tex]\(P\)[/tex] in the simple interest formula [tex]\(I = P \cdot r \cdot t\)[/tex], follow these steps:

1. Identify the given formula:
The given formula is [tex]\(I = P \cdot r \cdot t\)[/tex], where:
- [tex]\(I\)[/tex] is the interest,
- [tex]\(P\)[/tex] is the principal,
- [tex]\(r\)[/tex] is the rate,
- [tex]\(t\)[/tex] is the time.

2. Isolate the variable [tex]\(P\)[/tex]:
To solve for [tex]\(P\)[/tex], we need to isolate [tex]\(P\)[/tex] on one side of the equation. Start by rewriting the formula:
[tex]\[ I = P \cdot r \cdot t \][/tex]

3. Divide both sides by [tex]\(r \cdot t\)[/tex]:
To isolate [tex]\(P\)[/tex], divide both sides of the equation by [tex]\(r \cdot t\)[/tex]:
[tex]\[ P = \frac{I}{r \cdot t} \][/tex]

So, the formula for [tex]\(P\)[/tex] when isolated is:
[tex]\[ P = \frac{I}{r \cdot t} \][/tex]

Thus, the correct choice from the given options is:
[tex]\[ P = \frac{I}{r \cdot t} \][/tex]