Answer :
Sure! Let's go through the solution step-by-step for the given problem.
### Problem:
You are given:
- Resistance, [tex]\( R = 10 \)[/tex] Ohms
- Current, [tex]\( I = 2 \)[/tex] Amperes
- Voltage, [tex]\( V \)[/tex] is the unknown quantity we need to find.
### Solution:
We use Ohm's Law to determine the unknown voltage. Ohm's Law states that:
[tex]\[ V = I \times R \][/tex]
The formula expresses the relationship between the voltage (V), current (I), and resistance (R) in a circuit.
### Given:
1. Resistance ([tex]\( R \)[/tex]) = 10 Ohms
2. Current ([tex]\( I \)[/tex]) = 2 Amperes
### Applying Ohm's Law:
[tex]\[ V = I \times R \][/tex]
Substitute the given values into the equation:
[tex]\[ V = 2 \, \text{A} \times 10 \, \Omega \][/tex]
Perform the multiplication:
[tex]\[ V = 20 \, \text{Volts} \][/tex]
So, the voltage ([tex]\( V \)[/tex]) in the circuit is:
[tex]\[ \boxed{20 \, \text{Volts}} \][/tex]
This is the step-by-step solution using Ohm’s Law to find the unknown voltage.
If you have any other questions or need further assistance, feel free to ask!
### Problem:
You are given:
- Resistance, [tex]\( R = 10 \)[/tex] Ohms
- Current, [tex]\( I = 2 \)[/tex] Amperes
- Voltage, [tex]\( V \)[/tex] is the unknown quantity we need to find.
### Solution:
We use Ohm's Law to determine the unknown voltage. Ohm's Law states that:
[tex]\[ V = I \times R \][/tex]
The formula expresses the relationship between the voltage (V), current (I), and resistance (R) in a circuit.
### Given:
1. Resistance ([tex]\( R \)[/tex]) = 10 Ohms
2. Current ([tex]\( I \)[/tex]) = 2 Amperes
### Applying Ohm's Law:
[tex]\[ V = I \times R \][/tex]
Substitute the given values into the equation:
[tex]\[ V = 2 \, \text{A} \times 10 \, \Omega \][/tex]
Perform the multiplication:
[tex]\[ V = 20 \, \text{Volts} \][/tex]
So, the voltage ([tex]\( V \)[/tex]) in the circuit is:
[tex]\[ \boxed{20 \, \text{Volts}} \][/tex]
This is the step-by-step solution using Ohm’s Law to find the unknown voltage.
If you have any other questions or need further assistance, feel free to ask!