Find the value of [tex]$h(3)$[/tex] for the function below.

[tex]
h(x) = 3 \cdot 4^{(3x-3)} + 27
[/tex]

A. 12,315
B. 786,459
C. 12,369
D. 2,986,011



Answer :

To find the value of [tex]\( h(3) \)[/tex] for the function given by [tex]\( h(x) = 3 \cdot 4^{(3x-3)} + 27 \)[/tex], we need to substitute [tex]\( x = 3 \)[/tex] into the function and simplify the expression step by step.

1. Start with the given function:
[tex]\[ h(x) = 3 \cdot 4^{(3x-3)} + 27 \][/tex]

2. Substitute [tex]\( x = 3 \)[/tex] into the function:
[tex]\[ h(3) = 3 \cdot 4^{(3 \cdot 3 - 3)} + 27 \][/tex]

3. Simplify the exponent inside the function:
[tex]\[ 3 \cdot 3 - 3 = 9 - 3 = 6 \][/tex]

4. Substitute the simplified exponent back into the equation:
[tex]\[ h(3) = 3 \cdot 4^6 + 27 \][/tex]

5. Calculate [tex]\( 4^6 \)[/tex]:
[tex]\[ 4^6 = 4096 \][/tex]

6. Multiply the result by 3:
[tex]\[ 3 \cdot 4096 = 12288 \][/tex]

7. Add 27 to the result:
[tex]\[ 12288 + 27 = 12315 \][/tex]

Therefore, the value of [tex]\( h(3) \)[/tex] is [tex]\(\boxed{12315}\)[/tex].