24. 1024 in exponential form is [tex]$\qquad$[/tex]

A. [tex]2^{10}[/tex]

B. [tex]2^6[/tex]

C. [tex]16^2[/tex]

D. [tex]\frac{1}{8^2}[/tex]



Answer :

To determine which exponential form equals 1024, let's evaluate each option step by step.

1. For option (a) [tex]\(2^{10}\)[/tex]:
[tex]\[ 2^{10} = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 1024 \][/tex]

2. For option (b) [tex]\(2^6\)[/tex]:
[tex]\[ 2^6 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 64 \][/tex]

3. For option (c) [tex]\(16^2\)[/tex]:
[tex]\[ 16^2 = 16 \times 16 = 256 \][/tex]

4. For option (d) [tex]\(\frac{1}{8^2}\)[/tex]:
[tex]\[ 8^2 = 8 \times 8 = 64 \Rightarrow \frac{1}{8^2} = \frac{1}{64} \approx 0.015625 \][/tex]

Next, we compare each result to find which one equals 1024:

- [tex]\(2^{10} = 1024\)[/tex]
- [tex]\(2^6 = 64\)[/tex]
- [tex]\(16^2 = 256\)[/tex]
- [tex]\(\frac{1}{8^2} = 0.015625\)[/tex]

Among these results, only [tex]\(2^{10}\)[/tex] is equal to 1024.

Therefore, the correct exponential form for 1024 is:
[tex]\[ \boxed{2^{10}} \][/tex]
Option A is the correct answer