Use the tables to find [tex]$(p+q)(2)$[/tex].

\begin{tabular}{|c|c|}
\hline [tex]$x$[/tex] & [tex]$p(x)$[/tex] \\
\hline 4 & -1 \\
\hline 2 & 3 \\
\hline -3 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline [tex]$x$[/tex] & [tex]$q(x)$[/tex] \\
\hline 4 & 1 \\
\hline 2 & -2 \\
\hline -3 & 5 \\
\hline
\end{tabular}

[tex](p+q)(2)=[/tex]



Answer :

To find [tex]\((p+q)(2)\)[/tex], we need to evaluate the sum of the functions [tex]\(p(x)\)[/tex] and [tex]\(q(x)\)[/tex] at [tex]\(x = 2\)[/tex].

First, let's determine the value of [tex]\(p(2)\)[/tex] from the given table for [tex]\(p(x)\)[/tex]:
[tex]\[ \begin{array}{|c|c|} \hline x & p(x) \\ \hline 4 & -1 \\ \hline 2 & 3 \\ \hline -3 & 2 \\ \hline \end{array} \][/tex]
From the table, we see that [tex]\(p(2) = 3\)[/tex].

Next, let's determine the value of [tex]\(q(2)\)[/tex] from the given table for [tex]\(q(x)\)[/tex]:
[tex]\[ \begin{array}{|c|c|} \hline x & q(x) \\ \hline 4 & 1 \\ \hline 2 & -2 \\ \hline -3 & 5 \\ \hline \end{array} \][/tex]
From the table, we see that [tex]\(q(2) = -2\)[/tex].

Now, we add these values together to find [tex]\((p+q)(2)\)[/tex]:
[tex]\[ (p+q)(2) = p(2) + q(2) \][/tex]
Substituting the values we found:
[tex]\[ (p+q)(2) = 3 + (-2) \][/tex]
Simplifying the expression:
[tex]\[ (p+q)(2) = 3 - 2 = 1 \][/tex]

Therefore, [tex]\((p+q)(2) = 1\)[/tex].