Answer :

To find the product of [tex]\((x - 3)^2\)[/tex], follow these steps:

1. Understanding the problem: We need to expand the expression [tex]\((x - 3)^2\)[/tex].

2. Expand the expression:
[tex]\( (x - 3)(x - 3) \)[/tex]

3. Apply the distributive property (also known as FOIL method for binomials):
[tex]\[ (x - 3)(x - 3) = x^2 - 3x - 3x + 9 \][/tex]

4. Combine like terms:
[tex]\[ x^2 - 3x - 3x + 9 = x^2 - 6x + 9 \][/tex]

So, the product of [tex]\((x - 3)^2\)[/tex] is [tex]\(\boxed{x^2 - 6x + 9}\)[/tex].

Looking at the given options:
- [tex]\(x^2 + 6x + 9\)[/tex]
- [tex]\(x^2 - 9\)[/tex]
- [tex]\(x^2 - 6x + 9\)[/tex]
- [tex]\(x^2 + 9\)[/tex]

The correct answer is:
[tex]\[ x^2 - 6x + 9 \][/tex]

So, the correct choice is:
[tex]\[ \boxed{x^2 - 6x + 9} \][/tex]