Answer :
To determine the correct expression used to calculate the interest charged to Sergei, we'll use the average daily balance method step-by-step.
### 1. Understand the Problem
Sergei's balance during a 30-day billing cycle is:
- For the first 12 days: \[tex]$350 - For the last 18 days: \$[/tex]520
Annual Percentage Rate (APR): 14%
### 2. Calculate the Average Daily Balance
The average daily balance is calculated using the formula:
[tex]\[ \text{Average Daily Balance} = \frac{\text{Total Weighted Balance}}{\text{Total Days}} \][/tex]
The total weighted balance is:
[tex]\[ \text{Total Weighted Balance} = (\text{Balance for the First Period} \times \text{Days in the First Period}) + (\text{Balance for the Second Period} \times \text{Days in the Second Period}) \][/tex]
Plugging in Sergei's data:
[tex]\[ \text{Total Weighted Balance} = (\$350 \times 12) + (\$520 \times 18) \][/tex]
[tex]\[ \text{Total Weighted Balance} = 4200 + 9360 = 13560 \][/tex]
Since the total days in the billing cycle is 30, the average daily balance is:
[tex]\[ \text{Average Daily Balance} = \frac{13560}{30} = 452 \][/tex]
### 3. Calculate the Daily Interest Rate
The daily interest rate is given by:
[tex]\[ \text{Daily Interest Rate} = \frac{\text{APR}}{365} \][/tex]
Using the APR of 14%:
[tex]\[ \text{Daily Interest Rate} = \frac{0.14}{365} \approx 0.00038356 \][/tex]
### 4. Calculate the Interest Charged
The interest charged over the billing cycle (30 days) is:
[tex]\[ \text{Interest Charged} = \text{Daily Interest Rate} \times \text{Total Days} \times \text{Average Daily Balance} \][/tex]
Plugging in the values:
[tex]\[ \text{Interest Charged} = 0.00038356 \times 30 \times 452 \approx 5.183 \][/tex]
### 5. Identify the Correct Expression
Now we will match this method with the given expressions:
#### Expression A:
[tex]\[ \left(\frac{0.14}{365} \cdot 30\right)\left(\frac{12 \cdot 350 + 18 \cdot 520}{30}\right) \][/tex]
Simplifying inside the parentheses:
[tex]\[ \frac{12 \cdot 350 + 18 \cdot 520}{30} = 452 \][/tex]
The expression simplifies to:
[tex]\[ \left(\frac{0.14}{365} \cdot 30\right) \times 452 \][/tex]
This matches our step-by-step calculation, confirming that the correct expression is:
### Correct Answer:
[tex]\[ \boxed{1} \][/tex]
### 1. Understand the Problem
Sergei's balance during a 30-day billing cycle is:
- For the first 12 days: \[tex]$350 - For the last 18 days: \$[/tex]520
Annual Percentage Rate (APR): 14%
### 2. Calculate the Average Daily Balance
The average daily balance is calculated using the formula:
[tex]\[ \text{Average Daily Balance} = \frac{\text{Total Weighted Balance}}{\text{Total Days}} \][/tex]
The total weighted balance is:
[tex]\[ \text{Total Weighted Balance} = (\text{Balance for the First Period} \times \text{Days in the First Period}) + (\text{Balance for the Second Period} \times \text{Days in the Second Period}) \][/tex]
Plugging in Sergei's data:
[tex]\[ \text{Total Weighted Balance} = (\$350 \times 12) + (\$520 \times 18) \][/tex]
[tex]\[ \text{Total Weighted Balance} = 4200 + 9360 = 13560 \][/tex]
Since the total days in the billing cycle is 30, the average daily balance is:
[tex]\[ \text{Average Daily Balance} = \frac{13560}{30} = 452 \][/tex]
### 3. Calculate the Daily Interest Rate
The daily interest rate is given by:
[tex]\[ \text{Daily Interest Rate} = \frac{\text{APR}}{365} \][/tex]
Using the APR of 14%:
[tex]\[ \text{Daily Interest Rate} = \frac{0.14}{365} \approx 0.00038356 \][/tex]
### 4. Calculate the Interest Charged
The interest charged over the billing cycle (30 days) is:
[tex]\[ \text{Interest Charged} = \text{Daily Interest Rate} \times \text{Total Days} \times \text{Average Daily Balance} \][/tex]
Plugging in the values:
[tex]\[ \text{Interest Charged} = 0.00038356 \times 30 \times 452 \approx 5.183 \][/tex]
### 5. Identify the Correct Expression
Now we will match this method with the given expressions:
#### Expression A:
[tex]\[ \left(\frac{0.14}{365} \cdot 30\right)\left(\frac{12 \cdot 350 + 18 \cdot 520}{30}\right) \][/tex]
Simplifying inside the parentheses:
[tex]\[ \frac{12 \cdot 350 + 18 \cdot 520}{30} = 452 \][/tex]
The expression simplifies to:
[tex]\[ \left(\frac{0.14}{365} \cdot 30\right) \times 452 \][/tex]
This matches our step-by-step calculation, confirming that the correct expression is:
### Correct Answer:
[tex]\[ \boxed{1} \][/tex]