Given [tex]\( f(x) = x^2 \)[/tex]:

1. What is [tex]\( f(x) + f(x) + f(x) \)[/tex]?

[tex]\[
3 f(x) = \square
\][/tex]

2. Evaluate [tex]\( 3 f(2) = \square \)[/tex]



Answer :

Let's go through the problem step-by-step.

### Step 1: Define the Function f(x)
Given the function:
[tex]\[ f(x) = x^2 \][/tex]

### Step 2: Calculate [tex]\( f(x) + f(x) + f(x) \)[/tex]

First, we need to evaluate [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) = x^2 \][/tex]

Adding this function three times:
[tex]\[ f(x) + f(x) + f(x) \][/tex]
[tex]\[ = x^2 + x^2 + x^2 \][/tex]
[tex]\[ = 3x^2 \][/tex]

So,
[tex]\[ f(x) + f(x) + f(x) = 3x^2 \][/tex]

### Step 3: Calculate [tex]\( 3 f(x) \)[/tex]

Next, we calculate [tex]\( 3 f(x) \)[/tex]:
[tex]\[ 3 f(x) \][/tex]
[tex]\[ = 3 \cdot (x^2) \][/tex]
[tex]\[ = 3x^2 \][/tex]

So,
[tex]\[ 3 f(x) = 3x^2 \][/tex]

### Step 4: Evaluate [tex]\( 3 f(2) \)[/tex]

Finally, we evaluate [tex]\( 3 f(2) \)[/tex]:
[tex]\[ f(x) = x^2 \][/tex]
[tex]\[ f(2) = 2^2 = 4 \][/tex]

Thus,
[tex]\[ 3 f(2) = 3 \cdot f(2) \][/tex]
[tex]\[ = 3 \cdot 4 \][/tex]
[tex]\[ = 12 \][/tex]

### Summary

- [tex]\( f(x) + f(x) + f(x) = 3x^2 \)[/tex]
- [tex]\( 3 f(x) = 3x^2 \)[/tex]
- [tex]\( 3 f(2) = 12 \)[/tex]