[tex]\[
\begin{array}{l}
1 \frac{2}{3} + 2 \frac{1}{4} \times \frac{4}{15} \\
= \frac{\square}{3} + \frac{9}{\square} \times \frac{4}{15} \\
= \frac{\square}{3} + \left( \frac{\square}{\square} \right) \\
= \frac{\square + \square}{\square} \\
= \frac{\square}{\square} = \cdots
\end{array}
\][/tex]



Answer :

Let's solve the given problem step-by-step.

### Step 1: Convert Mixed Numbers to Improper Fractions

1. [tex]\( 1 \frac{2}{3} \)[/tex]:
[tex]\[ 1 \frac{2}{3} = 1 + \frac{2}{3} = \frac{3}{3} + \frac{2}{3} = \frac{5}{3} \][/tex]

2. [tex]\( 2 \frac{1}{4} \)[/tex]:
[tex]\[ 2 \frac{1}{4} = 2 + \frac{1}{4} = \frac{8}{4} + \frac{1}{4} = \frac{9}{4} \][/tex]

### Step 2: Multiply [tex]\( 2 \frac{1}{4} \)[/tex] by [tex]\( \frac{4}{15} \)[/tex]

[tex]\[ 2 \frac{1}{4} \times \frac{4}{15} = \frac{9}{4} \times \frac{4}{15} \][/tex]

Multiply the numerators and the denominators:

[tex]\[ \frac{9 \times 4}{4 \times 15} = \frac{36}{60} \][/tex]

Simplify the fraction:

[tex]\[ \frac{36}{60} = \frac{6}{10} = \frac{3}{5} \][/tex]

### Step 3: Add [tex]\( 1 \frac{2}{3} \)[/tex] and the result of the multiplication

Now, we need to add [tex]\( \frac{5}{3} \)[/tex] and [tex]\( \frac{3}{5} \)[/tex]. To add these fractions, find a common denominator. The least common multiple (LCM) of 3 and 5 is 15.

Convert each fraction to have a denominator of 15:

[tex]\[ \frac{5}{3} = \frac{5 \times 5}{3 \times 5} = \frac{25}{15} \][/tex]

[tex]\[ \frac{3}{5} = \frac{3 \times 3}{5 \times 3} = \frac{9}{15} \][/tex]

Now, add the fractions:

[tex]\[ \frac{25}{15} + \frac{9}{15} = \frac{25 + 9}{15} = \frac{34}{15} \][/tex]

### Step 4: Simplify the Fraction

The fraction [tex]\(\frac{34}{15}\)[/tex] is in its simplest form as the greatest common divisor (GCD) of 34 and 15 is 1.

### Final Answer

[tex]\[ 1 \frac{2}{3} + 2 \frac{1}{4} \times \frac{4}{15} = \frac{34}{15} \][/tex]