Answer :
Sure! Let's find [tex]\( g(3) \)[/tex] for the function [tex]\( g(x) = 4x - 5 \)[/tex].
1. Start with the given function:
[tex]\[ g(x) = 4x - 5 \][/tex]
2. We need to evaluate this function at [tex]\( x = 3 \)[/tex]. Replace [tex]\( x \)[/tex] with 3 in the function:
[tex]\[ g(3) = 4(3) - 5 \][/tex]
3. Perform the multiplication:
[tex]\[ 4 \times 3 = 12 \][/tex]
4. Subtract 5 from 12:
[tex]\[ 12 - 5 = 7 \][/tex]
So, the value of [tex]\( g(3) \)[/tex] is:
[tex]\[ g(3) = 7 \][/tex]
Therefore, [tex]\( g(3) = 7 \)[/tex].
1. Start with the given function:
[tex]\[ g(x) = 4x - 5 \][/tex]
2. We need to evaluate this function at [tex]\( x = 3 \)[/tex]. Replace [tex]\( x \)[/tex] with 3 in the function:
[tex]\[ g(3) = 4(3) - 5 \][/tex]
3. Perform the multiplication:
[tex]\[ 4 \times 3 = 12 \][/tex]
4. Subtract 5 from 12:
[tex]\[ 12 - 5 = 7 \][/tex]
So, the value of [tex]\( g(3) \)[/tex] is:
[tex]\[ g(3) = 7 \][/tex]
Therefore, [tex]\( g(3) = 7 \)[/tex].
Answer:
7
Step-by-step explanation:
[tex]g(x) = 4x-5[/tex] is an equation in x
To obtain [tex]g(3)[/tex], we need to replace all the [tex]x[/tex] with 3, like so
∴ [tex]g(x)=4x-5\\g(3)=4(3)-5\\g(3)=12-5\\g(3)=7[/tex]