3. Sally wants to spend no more than [tex]$\$[/tex]16[tex]$ on school supplies. The table shows how much each item costs at the school store. No tax is charged.

\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{Item} & \multicolumn{1}{c|}{Price} \\
\hline Loose leaf & \$[/tex]2.55/package \\
\hline Pen & [tex]$\$[/tex]1.22[tex]$/pen \\
\hline Binder & $[/tex]\[tex]$3.99$[/tex]/binder \\
\hline Eraser & [tex]$\$[/tex]0.67$/eraser \\
\hline
\end{tabular}

Which combination of items can Sally buy? Select all that apply.

A. 6 loose leaf and 6 pens

B. 8 pens and 8 erasers

C. 3 pens and 4 binders

D. 4 loose leaf and 8 erasers

E. 2 loose leaf and 3 binders

F. 3 binders and 6 erasers



Answer :

To determine which combinations of items Sally can buy without exceeding her budget of [tex]$16, we'll go through each combination one by one and calculate the total cost. 1. Combination A: 6 loose leaf and 6 pens - Loose leaf cost: \( \$[/tex]2.55 \text{ per package} \times 6 \text{ packages} = \[tex]$15.30 \) - Pen cost: \( \$[/tex]1.22 \text{ per pen} \times 6 \text{ pens} = \[tex]$7.32 \) - Total cost: \( \$[/tex]15.30 + \[tex]$7.32 = \$[/tex]22.62 \)

This combination exceeds the budget.

2. Combination B: 8 pens and 8 erasers

- Pen cost: [tex]\( \$1.22 \text{ per pen} \times 8 \text{ pens} = \$9.76 \)[/tex]
- Eraser cost: [tex]\( \$0.67 \text{ per eraser} \times 8 \text{ erasers} = \$5.36 \)[/tex]
- Total cost: [tex]\( \$9.76 + \$5.36 = \$15.12 \)[/tex]

This combination is within the budget.

3. Combination C: 3 pens and 4 binders

- Pen cost: [tex]\( \$1.22 \text{ per pen} \times 3 \text{ pens} = \$3.66 \)[/tex]
- Binder cost: [tex]\( \$3.99 \text{ per binder} \times 4 \text{ binders} = \$15.96 \)[/tex]
- Total cost: [tex]\( \$3.66 + \$15.96 = \$19.62 \)[/tex]

This combination exceeds the budget.

4. Combination D: 4 loose leaf and 8 erasers

- Loose leaf cost: [tex]\( \$2.55 \text{ per package} \times 4 \text{ packages} = \$10.20 \)[/tex]
- Eraser cost: [tex]\( \$0.67 \text{ per eraser} \times 8 \text{ erasers} = \$5.36 \)[/tex]
- Total cost: [tex]\( \$10.20 + \$5.36 = \$15.56 \)[/tex]

This combination is within the budget.

5. Combination E: 2 loose leaf and 3 binders

- Loose leaf cost: [tex]\( \$2.55 \text{ per package} \times 2 \text{ packages} = \$5.10 \)[/tex]
- Binder cost: [tex]\( \$3.99 \text{ per binder} \times 3 \text{ binders} = \$11.97 \)[/tex]
- Total cost: [tex]\( \$5.10 + \$11.97 = \$17.07 \)[/tex]

This combination exceeds the budget.

6. Combination F: 3 binders and 6 erasers

- Binder cost: [tex]\( \$3.99 \text{ per binder} \times 3 \text{ binders} = \$11.97 \)[/tex]
- Eraser cost: [tex]\( \$0.67 \text{ per eraser} \times 6 \text{ erasers} = \$4.02 \)[/tex]
- Total cost: [tex]\( \$11.97 + \$4.02 = \$15.99 \)[/tex]

This combination is within the budget.

Based on these calculations, the combinations that Sally can buy within her $16 budget are:

- B: 8 pens and 8 erasers
- D: 4 loose leaf and 8 erasers
- F: 3 binders and 6 erasers