Select the correct answer.

Simplify the expression given below.
[tex]\[ \left(125 p^{18}\right)^{-\frac{2}{3}} \][/tex]

A. [tex]\(-\frac{p^{12}}{25}\)[/tex]

B. [tex]\(-25 p^{12}\)[/tex]

C. [tex]\(\frac{25}{p^{12}}\)[/tex]

D. [tex]\(\frac{1}{25 p^{12}}\)[/tex]



Answer :

To simplify the expression [tex]\(\left(125 p^{18}\right)^{-\frac{2}{3}}\)[/tex], we follow several steps that utilize the laws of exponents.

1. Simplify the coefficient part: [tex]\(125^{-\frac{2}{3}}\)[/tex]
2. Simplify the exponent part: [tex]\((p^{18})^{-\frac{2}{3}}\)[/tex]

### Step 1: Simplify the coefficient
First, let's simplify the coefficient [tex]\(125^{-\frac{2}{3}}\)[/tex]:

125 can be written as [tex]\(5^3\)[/tex]:
[tex]\[ 125 = 5^3 \][/tex]

Now, substituting this back into our expression:
[tex]\[ \left(5^3\right)^{-\frac{2}{3}} \][/tex]

Using the property of exponents [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]:
[tex]\[ 5^{3 \cdot -\frac{2}{3}} \][/tex]

Simplify the exponent:
[tex]\[ 5^{-2} \][/tex]

This can be further simplified since [tex]\(5^{-2} = \frac{1}{5^2}\)[/tex]:
[tex]\[ \frac{1}{5^2} = \frac{1}{25} \][/tex]

Therefore:
[tex]\[ 125^{-\frac{2}{3}} = \frac{1}{25} \][/tex]

### Step 2: Simplify the exponent part
Now, let's simplify [tex]\((p^{18})^{-\frac{2}{3}}\)[/tex]:

Using the property of exponents [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]:
[tex]\[ p^{18 \cdot -\frac{2}{3}} \][/tex]

Simplify the exponent:
[tex]\[ p^{-12} \][/tex]

### Combine the simplified parts
Putting it all together, we get:
[tex]\[ \frac{1}{25} \cdot p^{-12} \][/tex]

This can be written as:
[tex]\[ \frac{1}{25 p^{12}} \][/tex]

### Correct Answer
Therefore, the simplified expression [tex]\(\left(125 p^{18}\right)^{-\frac{2}{3}}\)[/tex] is:
[tex]\[ \frac{1}{25 p^{12}} \][/tex]

So, the correct answer is:
[tex]\[ \boxed{D. \frac{1}{25 p^{12}}} \][/tex]