Select the correct answer.

Which expression is equivalent to the given expression?

[tex]\left(6 n^{-5}\right)\left(3 n^{-3}\right)^2[/tex]

A. [tex]\frac{36}{n^{11}}[/tex]
B. [tex]54 n^{30}[/tex]
C. [tex]36 n^{30}[/tex]
D. [tex]\frac{54}{n^{12}}[/tex]



Answer :

Alright, let's simplify the given expression step-by-step:

The given expression is:
[tex]\[ (6 n^{-5})(3 n^{-3})^2 \][/tex]

1. Simplify the part inside the parenthesis:
[tex]\[ (3 n^{-3})^2 \][/tex]
When raising a product to a power, raise both the constant and the variable:
[tex]\[ (3 n^{-3})^2 = 3^2 (n^{-3})^2 = 9 n^{-6} \][/tex]

2. Now, substitute this back into the original expression:
[tex]\[ (6 n^{-5})(9 n^{-6}) \][/tex]

3. Multiply the constants:
[tex]\[ 6 \cdot 9 = 54 \][/tex]

4. Combine the exponents for the same base [tex]\( n \)[/tex]:
[tex]\[ n^{-5} \cdot n^{-6} = n^{-5 + (-6)} = n^{-11} \][/tex]

5. Combine the results:
[tex]\[ 54 n^{-11} \][/tex]

6. Rewriting [tex]\( n^{-11} \)[/tex] as a fraction:
[tex]\[ 54 n^{-11} = \frac{54}{n^{11}} \][/tex]

Thus, the equivalent expression is:
[tex]\[ \frac{54}{n^{11}} \][/tex]

So, the correct answer is [tex]\( \text{D.} \frac{54}{n^{11}} \)[/tex].