Select the correct answer from each drop-down menu.

Simplify:
[tex]\[ \sqrt{63} \][/tex]
[tex]\[ \square \sqrt{1} \square \][/tex]

---

Note: Without additional context or information about the options available in the drop-down menu, this is the most straightforward way to present the question clearly.



Answer :

To simplify the square root expressions, we need to understand the simplification process of each square root and then put them together. Here is the detailed step-by-step solution:

1. Simplify [tex]\( \sqrt{63} \)[/tex]:
- Note that 63 can be factored into 9 and 7: [tex]\( 63 = 9 \times 7 \)[/tex].
- Take the square root of each factor: [tex]\( \sqrt{63} = \sqrt{9 \times 7} = \sqrt{9} \times \sqrt{7} \)[/tex].
- We know [tex]\( \sqrt{9} = 3 \)[/tex], so [tex]\( \sqrt{63} = 3\sqrt{7} \)[/tex].

2. Simplify [tex]\( \sqrt{1} \)[/tex]:
- The number 1 is a perfect square, so [tex]\( \sqrt{1} = 1 \)[/tex].

3. Combining the simplifications:
- We already simplified [tex]\( \sqrt{63} \)[/tex] to [tex]\( 3\sqrt{7} \)[/tex] and [tex]\( \sqrt{1} \)[/tex] to 1. We then combine them.

Therefore, the simplified form of [tex]\( \sqrt{63} \)[/tex] and [tex]\( \sqrt{1} \)[/tex] is:
[tex]\( 3\sqrt{7} \)[/tex] and 1 respectively.

So the simplified form when combined is:

[tex]\[ 3\sqrt{7} \sqrt{1} = 3\sqrt{7} \cdot 1 = 3\sqrt{7} \][/tex]

Select the correct answer from each drop-down menu.

Simplify.
[tex]$ \sqrt{63} $[/tex]
[tex]\[3\sqrt{7}\][/tex]
[tex]$\sqrt{1}$[/tex]
[tex]\[1\][/tex]

Therefore,

[tex]$ \sqrt{63} \cdot \sqrt{1} = 3\sqrt{7} $[/tex]