Answer :
Let's solve each of the given expressions step by step:
1. Evaluate [tex]\((3x^2 - 6x + 11) - (10x^2 - 4x + 6)\)[/tex]:
- Distribute the negative sign through the second polynomial: [tex]\(3x^2 - 6x + 11 - 10x^2 + 4x - 6\)[/tex]
- Combine like terms:
- [tex]\(3x^2 - 10x^2 = -7x^2\)[/tex]
- [tex]\(-6x + 4x = -2x\)[/tex]
- [tex]\(11 - 6 = 5\)[/tex]
- The resulting expression is [tex]\(-7x^2 - 2x + 5\)[/tex]
- This matches expression [tex]\(A\)[/tex].
2. Evaluate [tex]\((-3x^2 - 5x - 3) - (-10x^2 - 7x + 2)\)[/tex]:
- Distribute the negative sign through the second polynomial: [tex]\(-3x^2 - 5x - 3 + 10x^2 + 7x - 2\)[/tex]
- Combine like terms:
- [tex]\(-3x^2 + 10x^2 = 7x^2\)[/tex]
- [tex]\(-5x + 7x = 2x\)[/tex]
- [tex]\(-3 - 2 = -5\)[/tex]
- The resulting expression is [tex]\(7x^2 + 2x - 5\)[/tex]
- This matches expression [tex]\(C\)[/tex].
3. Evaluate [tex]\((12x^2 + 6x - 5) - (5x^2 + 8x - 12)\)[/tex]:
- Distribute the negative sign through the second polynomial: [tex]\(12x^2 + 6x - 5 - 5x^2 - 8x + 12\)[/tex]
- Combine like terms:
- [tex]\(12x^2 - 5x^2 = 7x^2\)[/tex]
- [tex]\(6x - 8x = -2x\)[/tex]
- [tex]\(-5 + 12 = 7\)[/tex]
- The resulting expression is [tex]\(7x^2 - 2x + 7\)[/tex]
- This matches expression [tex]\(B\)[/tex].
So the completed statements are:
1. [tex]\((3x^2 - 6x + 11) - (10x^2 - 4x + 6)\)[/tex] is equivalent to expression [tex]\(\boxed{A}\)[/tex]
2. [tex]\((-3x^2 - 5x - 3) - (-10x^2 - 7x + 2)\)[/tex] is equivalent to expression [tex]\(\boxed{C}\)[/tex]
3. [tex]\((12x^2 + 6x - 5) - (5x^2 + 8x - 12)\)[/tex] is equivalent to expression [tex]\(\boxed{B}\)[/tex]
1. Evaluate [tex]\((3x^2 - 6x + 11) - (10x^2 - 4x + 6)\)[/tex]:
- Distribute the negative sign through the second polynomial: [tex]\(3x^2 - 6x + 11 - 10x^2 + 4x - 6\)[/tex]
- Combine like terms:
- [tex]\(3x^2 - 10x^2 = -7x^2\)[/tex]
- [tex]\(-6x + 4x = -2x\)[/tex]
- [tex]\(11 - 6 = 5\)[/tex]
- The resulting expression is [tex]\(-7x^2 - 2x + 5\)[/tex]
- This matches expression [tex]\(A\)[/tex].
2. Evaluate [tex]\((-3x^2 - 5x - 3) - (-10x^2 - 7x + 2)\)[/tex]:
- Distribute the negative sign through the second polynomial: [tex]\(-3x^2 - 5x - 3 + 10x^2 + 7x - 2\)[/tex]
- Combine like terms:
- [tex]\(-3x^2 + 10x^2 = 7x^2\)[/tex]
- [tex]\(-5x + 7x = 2x\)[/tex]
- [tex]\(-3 - 2 = -5\)[/tex]
- The resulting expression is [tex]\(7x^2 + 2x - 5\)[/tex]
- This matches expression [tex]\(C\)[/tex].
3. Evaluate [tex]\((12x^2 + 6x - 5) - (5x^2 + 8x - 12)\)[/tex]:
- Distribute the negative sign through the second polynomial: [tex]\(12x^2 + 6x - 5 - 5x^2 - 8x + 12\)[/tex]
- Combine like terms:
- [tex]\(12x^2 - 5x^2 = 7x^2\)[/tex]
- [tex]\(6x - 8x = -2x\)[/tex]
- [tex]\(-5 + 12 = 7\)[/tex]
- The resulting expression is [tex]\(7x^2 - 2x + 7\)[/tex]
- This matches expression [tex]\(B\)[/tex].
So the completed statements are:
1. [tex]\((3x^2 - 6x + 11) - (10x^2 - 4x + 6)\)[/tex] is equivalent to expression [tex]\(\boxed{A}\)[/tex]
2. [tex]\((-3x^2 - 5x - 3) - (-10x^2 - 7x + 2)\)[/tex] is equivalent to expression [tex]\(\boxed{C}\)[/tex]
3. [tex]\((12x^2 + 6x - 5) - (5x^2 + 8x - 12)\)[/tex] is equivalent to expression [tex]\(\boxed{B}\)[/tex]