Select the correct answer.

Simplify [tex]\sqrt{50}[/tex].

A. [tex]10 \sqrt{5}[/tex]

B. [tex]2 \sqrt{5}[/tex]

C. [tex]5 \sqrt{2}[/tex]

D. [tex]25 \sqrt{2}[/tex]



Answer :

To simplify [tex]\(\sqrt{50}\)[/tex], follow these steps:

1. Identify factors of 50: Recognize that [tex]\(50\)[/tex] can be broken down into the product of [tex]\(25\)[/tex] and [tex]\(2\)[/tex] (since [tex]\(50 = 25 \times 2\)[/tex]).

2. Use the property of square roots: Recall that [tex]\(\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}\)[/tex]. Applying this property, decompose [tex]\(\sqrt{50}\)[/tex] as follows:
[tex]\[ \sqrt{50} = \sqrt{25 \times 2} \][/tex]

3. Simplify the square root: Since [tex]\(25\)[/tex] is a perfect square, we know that [tex]\(\sqrt{25} = 5\)[/tex]. Substituting this value into the equation, we get:
[tex]\[ \sqrt{50} = \sqrt{25 \times 2} = \sqrt{25} \times \sqrt{2} = 5 \times \sqrt{2} \][/tex]

Therefore, the simplified form of [tex]\(\sqrt{50}\)[/tex] is:
[tex]\[ 5 \sqrt{2} \][/tex]

So, the correct answer is:
[tex]\[ \boxed{5 \sqrt{2}} \][/tex]