Factor completely [tex]5x^4 - 80[/tex].

A. [tex]5\left(x^2 - 4\right)\left(x^2 + 4\right)[/tex]
B. [tex]5(x - 2)(x + 2)(x + 2)(x + 2)[/tex]
C. [tex]5(x - 2)(x + 2)\left(x^2 - 4\right)[/tex]
D. [tex]5(x - 2)(x + 2)\left(x^2 + 4\right)[/tex]



Answer :

To factor the polynomial expression [tex]\(5x^4 - 80\)[/tex] completely, follow these steps:

1. Identify the common factor:
First, observe that the terms [tex]\(5x^4\)[/tex] and [tex]\(80\)[/tex] share a common factor of 5. Factor out this common factor:
[tex]\[ 5x^4 - 80 = 5(x^4 - 16) \][/tex]

2. Factor the quadratic expression:
Next, we need to factor the expression inside the parentheses, [tex]\(x^4 - 16\)[/tex]. Notice that [tex]\(x^4 - 16\)[/tex] is a difference of squares, which can be written as:
[tex]\[ x^4 - 16 = (x^2)^2 - 4^2 = (x^2 - 4)(x^2 + 4) \][/tex]

3. Factor the difference of squares further:
The expression [tex]\(x^2 - 4\)[/tex] is also a difference of squares. It can be factored as follows:
[tex]\[ x^2 - 4 = (x - 2)(x + 2) \][/tex]
So, substituting back:
[tex]\[ x^4 - 16 = (x - 2)(x + 2)(x^2 + 4) \][/tex]

Now substitute this back into the expression we factored out initially:
[tex]\[ 5(x^4 - 16) = 5((x - 2)(x + 2)(x^2 + 4)) \][/tex]

Thus, the completely factored form of [tex]\(5x^4 - 80\)[/tex] is:
[tex]\[ 5(x - 2)(x + 2)(x^2 + 4) \][/tex]

So, the correct answer is:
[tex]\[ 5(x - 2)(x + 2)(x^2 + 4) \][/tex]