Select the correct answer.

Find the product of the given polynomials.

[tex]\[ (5x + 8 - 6x)(4 + 2x - 7) \][/tex]

A. [tex]\(-2x^2 + 19x - 24\)[/tex]

B. [tex]\(-2x^2 - 24x + 19\)[/tex]

C. [tex]\(2x^2 + 19x + 24\)[/tex]

D. [tex]\(2x^2 + 13x - 24\)[/tex]



Answer :

To find the product of the given polynomials, [tex]\((5x + 8 - 6x)(4 + 2x - 7)\)[/tex], we first simplify both polynomials, and then multiply them out.

1. Simplify the first polynomial:
[tex]\[ 5x + 8 - 6x = (5x - 6x) + 8 = -x + 8 \][/tex]

2. Simplify the second polynomial:
[tex]\[ 4 + 2x - 7 = 2x + (4 - 7) = 2x - 3 \][/tex]

So, we need to find the product of the simplified polynomials:
[tex]\[ (-x + 8)(2x - 3) \][/tex]

Next, we distribute each term in the first polynomial to each term in the second polynomial:

1. Multiply [tex]\(-x\)[/tex] by each term in [tex]\(2x - 3\)[/tex]:
[tex]\[ -x \cdot 2x = -2x^2 \][/tex]
[tex]\[ -x \cdot (-3) = 3x \][/tex]

2. Multiply [tex]\(8\)[/tex] by each term in [tex]\(2x - 3\)[/tex]:
[tex]\[ 8 \cdot 2x = 16x \][/tex]
[tex]\[ 8 \cdot (-3) = -24 \][/tex]

Now, combine these results:
[tex]\[ -2x^2 + 3x + 16x - 24 \][/tex]

Combine like terms:
[tex]\[ -2x^2 + 19x - 24 \][/tex]

So, the product of the polynomials [tex]\((5x + 8 - 6x)(4 + 2x - 7)\)[/tex] is:
[tex]\[ -2x^2 + 19x - 24 \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{-2x^2 + 19x - 24} \][/tex]

So the correct choice is:
A. [tex]\(-2x^2 + 19x - 24\)[/tex]