Select the correct answer from each drop-down menu.

Simplify the following polynomial expression:
[tex]\[ \left(3x^2 - x - 7\right) - \left(5x^2 - 4x - 2\right) + (x + 3)(x + 2) \][/tex]

The polynomial simplifies to an expression that is a [tex]$\square$[/tex]
[tex]$\square$[/tex] with a degree of [tex]$\square$[/tex]

Reset
Next



Answer :

Sure, let's simplify the given polynomial expression step-by-step.

Given expression:
[tex]\[ (3x^2 - x - 7) - (5x^2 - 4x - 2) + (x + 3)(x + 2) \][/tex]

First, let's distribute and simplify each part separately.

1. [tex]\((3x^2 - x - 7)\)[/tex]
2. Subtract the second polynomial: [tex]\((5x^2 - 4x - 2)\)[/tex]
[tex]\[ (3x^2 - x - 7) - (5x^2 - 4x - 2) = 3x^2 - x - 7 - 5x^2 + 4x + 2 \][/tex]
Combine like terms:
[tex]\[ (3x^2 - 5x^2) + (-x + 4x) + (-7 + 2) = -2x^2 + 3x - 5 \][/tex]

3. Expand the product [tex]\((x + 3)(x + 2)\)[/tex]:
[tex]\[ (x + 3)(x + 2) = x^2 + 2x + 3x + 6 \][/tex]
Combine like terms:
[tex]\[ x^2 + 5x + 6 \][/tex]

Now add this expanded product to the simplified form from earlier:
[tex]\[ (-2x^2 + 3x - 5) + (x^2 + 5x + 6) \][/tex]
Combine like terms:
[tex]\[ (-2x^2 + x^2) + (3x + 5x) + (-5 + 6) = -x^2 + 8x + 1 \][/tex]

So, the polynomial simplifies to:
[tex]\[ -x^2 + 8x + 1 \][/tex]

The degree of this polynomial is the highest power of [tex]\(x\)[/tex] in the expression, which is 2.

Hence, the polynomial simplifies to an expression that is a quadratic polynomial with a degree of 2.