Select the correct answer from each drop-down menu.
Points [tex]\(A, B\)[/tex], and [tex]\(C\)[/tex] form a triangle. Complete the statements to prove that the sum of the interior angles of [tex]\(\triangle ABC\)[/tex] is [tex]\(180^\circ\)[/tex].
[tex]\[
\begin{tabular}{|c|c|}
\hline
Statement & Reason \\
\hline
Points \(A, B\), and \(C\) form a triangle. & Given \\
\hline
Let \(\overline{DE}\) be a line passing through \(B\) and parallel to \(\overline{AC}\). & Definition of parallel lines \\
\hline
\(\angle 3 \cong \angle 5\) and \(\angle 1 \cong \angle 4\) & Corresponding angles are congruent \\
\hline
\(m \angle 1 = m \angle 4\) and \(m \angle 3 = m \angle 5\) & Definition of congruent angles \\
\hline
\(m \angle 4 + m \angle 2 + m \angle 5 = 180^\circ\) & Angle addition and definition of a straight line \\
\hline
\end{tabular}
\][/tex]