Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used.

Match each division expression with the correct quotient.

[tex]\[
\begin{array}{l}
\frac{-14x^2 - 68x - 48}{2x + 8} \\
\square \\
\frac{-68x^2 + 163x - 77}{11x - 7} \\
\square \\
\frac{-55x^2 + 68x - 21}{-5x + 3} \\
\square \\
\end{array}
\][/tex]

Tiles:

[tex]\[
\begin{array}{l}
11 \\
11x + 7 \\
6x \\
11x - 7 \\
7x \\
7x + 6 \\
-7x - 6 \\
-6x \\
\end{array}
\][/tex]



Answer :

Sure, let's solve the problem step-by-step. We need to match each division expression with its correct quotient.

1. Given the division expression: [tex]\(\frac{-14x^2 - 68x - 48}{2x + 8}\)[/tex]

The correct quotient for this expression is:
- [tex]\( -7x - 6 \)[/tex]

2. The next division expression is: [tex]\(\frac{-68x^2 + 163x - 77}{11x - 7}\)[/tex]

The correct quotient for this expression is:
- [tex]\( \frac{1317}{121} - \frac{68}{11}x \)[/tex]

3. Finally, we have the division expression: [tex]\(\frac{-55x^2 + 68x - 21}{-5x + 3}\)[/tex]

The correct quotient for this expression is:
- [tex]\( 11x - 7 \)[/tex]

So, the matched pairs are:

1. [tex]\(\frac{-14x^2 - 68x - 48}{2x + 8} \longrightarrow -7x - 6\)[/tex]
2. [tex]\(\frac{-68x^2 + 163x - 77}{11x - 7} \longrightarrow \frac{1317}{121} - \frac{68}{11}x\)[/tex]
3. [tex]\(\frac{-55x^2 + 68x - 21}{-5x + 3} \longrightarrow 11x - 7\)[/tex]

These are the correct matches for each division expression with their respective quotients.