Sure, let's solve the problem step-by-step. We need to match each division expression with its correct quotient.
1. Given the division expression: [tex]\(\frac{-14x^2 - 68x - 48}{2x + 8}\)[/tex]
The correct quotient for this expression is:
- [tex]\( -7x - 6 \)[/tex]
2. The next division expression is: [tex]\(\frac{-68x^2 + 163x - 77}{11x - 7}\)[/tex]
The correct quotient for this expression is:
- [tex]\( \frac{1317}{121} - \frac{68}{11}x \)[/tex]
3. Finally, we have the division expression: [tex]\(\frac{-55x^2 + 68x - 21}{-5x + 3}\)[/tex]
The correct quotient for this expression is:
- [tex]\( 11x - 7 \)[/tex]
So, the matched pairs are:
1. [tex]\(\frac{-14x^2 - 68x - 48}{2x + 8} \longrightarrow -7x - 6\)[/tex]
2. [tex]\(\frac{-68x^2 + 163x - 77}{11x - 7} \longrightarrow \frac{1317}{121} - \frac{68}{11}x\)[/tex]
3. [tex]\(\frac{-55x^2 + 68x - 21}{-5x + 3} \longrightarrow 11x - 7\)[/tex]
These are the correct matches for each division expression with their respective quotients.