TME REMAINING: 26:28

In order to solve for the variable in the equation [tex]$1-(x+2)+2x=5(2x-5)-x$[/tex], Mikel first applies the distributive property. Which equation is a result of this step?

A. [tex]$1 - x + 2 + 2x = 10x - 5 - x$[/tex]
B. [tex][tex]$1 - x - 2 + 2x = 10x - 25 - x$[/tex][/tex]
C. [tex]$1 - x - 1 + 2x = 10x - 25 - x$[/tex]
D. [tex]$1 - x - 1 + 2x = 10x - 5 - x$[/tex]



Answer :

To solve for the variable in the equation [tex]\( 1 - (x + 2) + 2x = 5(2x - 5) - x \)[/tex], we need to apply the distributive property properly. Let's go through the step-by-step process to determine which equation results from this step.

Firstly, start with the given equation:
[tex]\[ 1 - (x + 2) + 2x = 5(2x - 5) - x \][/tex]

### Left Side Simplification:
Apply the distributive property to eliminate the parentheses:
[tex]\[ 1 - x - 2 + 2x \][/tex]

Combine like terms:
[tex]\[ 1 - 2 - x + 2x \][/tex]
[tex]\[ -1 + x \][/tex]

### Right Side Simplification:
Apply the distributive property on the right-hand side:
[tex]\[ 5(2x - 5) - x \][/tex]
[tex]\[ 10x - 25 - x \][/tex]

Now, putting both sides together, the simplified equation is:
[tex]\[ -1 + x = 10x - 25 - x \][/tex]

Finally, rewrite the equation, aligning similar terms:
[tex]\[ 1 - x - 2 + 2x = 10x - 25 - x \][/tex]

This matches one of the given options. Therefore, the correct answer is:
[tex]\[ 1 - x - 2 + 2x = 10x - 25 - x \][/tex]

Thus, the correct equation resulting from applying the distributive property is:
[tex]\[ \boxed{1 - x - 2 + 2x = 10x - 25 - x} \][/tex]