Answer :
To determine which value is equivalent to the expression [tex]\( x^2 - 3x + 2 \)[/tex] when [tex]\( x = 5 \)[/tex], we follow these steps:
1. Substitute [tex]\( x = 5 \)[/tex] into the expression:
[tex]\[ x^2 - 3x + 2 \implies 5^2 - 3(5) + 2 \][/tex]
2. Calculate [tex]\( 5^2 \)[/tex]:
[tex]\[ 5^2 = 25 \][/tex]
3. Calculate [tex]\( 3(5) \)[/tex]:
[tex]\[ 3 \cdot 5 = 15 \][/tex]
4. Substitute these calculated values back into the expression:
[tex]\[ 25 - 15 + 2 \][/tex]
5. Perform the addition and subtraction in order:
[tex]\[ 25 - 15 = 10 \][/tex]
[tex]\[ 10 + 2 = 12 \][/tex]
Thus, when [tex]\( x = 5 \)[/tex], the expression [tex]\( x^2 - 3x + 2 \)[/tex] evaluates to 12.
Therefore, the correct answer is:
[tex]\[ \boxed{12} \][/tex]
So, the corresponding answer in the given options is:
[tex]\[ \boxed{C} \][/tex]
1. Substitute [tex]\( x = 5 \)[/tex] into the expression:
[tex]\[ x^2 - 3x + 2 \implies 5^2 - 3(5) + 2 \][/tex]
2. Calculate [tex]\( 5^2 \)[/tex]:
[tex]\[ 5^2 = 25 \][/tex]
3. Calculate [tex]\( 3(5) \)[/tex]:
[tex]\[ 3 \cdot 5 = 15 \][/tex]
4. Substitute these calculated values back into the expression:
[tex]\[ 25 - 15 + 2 \][/tex]
5. Perform the addition and subtraction in order:
[tex]\[ 25 - 15 = 10 \][/tex]
[tex]\[ 10 + 2 = 12 \][/tex]
Thus, when [tex]\( x = 5 \)[/tex], the expression [tex]\( x^2 - 3x + 2 \)[/tex] evaluates to 12.
Therefore, the correct answer is:
[tex]\[ \boxed{12} \][/tex]
So, the corresponding answer in the given options is:
[tex]\[ \boxed{C} \][/tex]