Answer :

To solve the expression [tex]\(\frac{5x - 2}{3} \times (-12)\)[/tex], follow these steps:

1. Write down the original expression:
[tex]\[ \frac{(5x - 2)}{3} \times (-12) \][/tex]

2. Multiply the entire fraction by [tex]\(-12\)[/tex]:
To multiply a fraction by a number, you multiply the numerator by that number. So we can rework the expression as follows:
[tex]\[ \left(\frac{5x - 2}{3}\right) \times (-12) = \frac{(5x - 2) \times (-12)}{3} \][/tex]

3. Distribute [tex]\(-12\)[/tex] in the numerator:
Distribute [tex]\(-12\)[/tex] across the terms in the numerator:
[tex]\[ \frac{5x \times (-12) - 2 \times (-12)}{3} \][/tex]

4. Perform the multiplications inside the numerator:
[tex]\[ 5x \times (-12) = -60x \][/tex]
and
[tex]\[ -2 \times (-12) = 24 \][/tex]
So the expression becomes:
[tex]\[ \frac{-60x + 24}{3} \][/tex]

5. Simplify the fraction:
Now, we simplify each term in the numerator by dividing by the denominator (which is 3):
[tex]\[ \frac{-60x}{3} + \frac{24}{3} = -20x + 8 \][/tex]

6. Write the simplified result:
The simplified form of the expression [tex]\(\frac{5x - 2}{3} \times (-12)\)[/tex] is:
[tex]\[ 8 - 20x \][/tex]

So, the final answer to the expression [tex]\(\frac{5x - 2}{3} \times (-12)\)[/tex] is:
[tex]\[ 8 - 20x \][/tex]