Question 1 (Multiple Choice, Worth 3 points)
The piecewise function represents the amount of taxes owed, [tex]f(x)[/tex], as a function of the taxable income, [tex]x[/tex]. Use the marginal tax rate chart or the piecewise function to answer the question.
Marginal Tax Rate Chart
\begin{tabular}{|c|c|}
\hline Tax Bracket & Marginal Tax Rate \\
\hline \[tex]$0 - \$[/tex]10,275 & 10\% \\
\hline \[tex]$10,276 - \$[/tex]41,175 & 12\% \\
\hline \[tex]$41,176 - \$[/tex]89,075 & 22\% \\
\hline \[tex]$89,076 - \$[/tex]170,050 & 24\% \\
\hline \[tex]$170,051 - \$[/tex]215,950 & 32\% \\
\hline \[tex]$215,951 - \$[/tex]539,900 & 35\% \\
\hline >\$539,901 & 37\% \\
\hline
\end{tabular}
Piecewise Function:
\[
f(x) = \left\{
\begin{array}{l l}
0.10x & \text{if } 0 \leq x \leq 10,275 \\
0.12x - 205.50 & \text{if } 10,276 \leq x \leq 41,175 \\
0.22x - 4,323.00 & \text{if } 41,176 \leq x \leq 89,075 \\
0.24x - 6,104.50 & \text{if } 89,076 \leq x \leq 170,050 \\
0.32x - 19,708.50 & \text{if } 170,051 \leq x \leq 215,950 \\
0.35x - 26,187.00 & \text{if } 215,951 \leq x \leq 539,900 \\
0.37x - 36,985.00 & \text{if } x \geq 539,901 \\
\end{array}
\right.
\]
Determine the effective tax rate for a taxable income of [tex]\$95,600[/tex]. Round the final answer to the nearest hundredth.
A. 17.00%
B. 17.61%
C. 22.70%
D. 24.00%