Simplify the expression. Write the answer using scientific notation.

[tex]\[ 8\left(8.8 \times 10^{12}\right) \][/tex]

A. [tex]\(1.68 \times 10^{13}\)[/tex]

B. [tex]\(70.4 \times 10^{12}\)[/tex]

C. [tex]\(7.04 \times 10^{13}\)[/tex]

D. [tex]\(70.4 \times 10^{24}\)[/tex]



Answer :

To simplify the expression [tex]\( 8 \left( 8.8 \times 10^{12} \right) \)[/tex] and write the answer in scientific notation, let's go through the steps carefully:

1. Identify the components of the expression:
- The expression consists of a multiplier (8) and a number in scientific notation ([tex]\(8.8 \times 10^{12}\)[/tex]).

2. Distribute the multiplier:
- Multiply the coefficient (8.8) by the multiplier (8).

[tex]\[ 8.8 \times 8 = 70.4 \][/tex]

3. Keep the exponent the same:
- The exponent in the scientific notation ([tex]\(10^{12}\)[/tex]) remains unchanged during the multiplication.

4. Combine the results:
- The new coefficient is 70.4, and the exponent is still 12. Hence, the expression becomes [tex]\( 70.4 \times 10^{12} \)[/tex].

Given this detailed breakdown, the simplified expression is:

[tex]\[ 70.4 \times 10^{12} \][/tex]

So, the correct answer, written in scientific notation, is:

[tex]\[ 70.4 \times 10^{12} \][/tex]

Among the given options:
- [tex]\(1.68 \times 10^{13}\)[/tex]
- [tex]\(70.4 \times 10^{12}\)[/tex] ([tex]\(\text{Correct Answer}\)[/tex])
- [tex]\(7.04 \times 10^{13}\)[/tex]
- [tex]\(70.4 \times 10^{24}\)[/tex]

The correct choice is:

[tex]\[ 70.4 \times 10^{12} \][/tex]