Find the set [tex]\(( A \cap C )^{\prime}\)[/tex].

[tex]\[
\begin{array}{l}
U = \{1, 2, 3, 4, 5, 6, 7, 8\} \\
A = \{2, 4, 7, 8\} \\
C = \{3, 4, 5, 7, 8\}
\end{array}
\][/tex]

Select the correct choice below and, if necessary, fill in the answer box to complete your choice.

A. [tex]\((A \cap C)^{\prime} = \square\)[/tex] (Use a comma to separate answers as needed.)
B. [tex]\((A \cap C)^{\prime}\)[/tex] is the empty set.



Answer :

To determine the set [tex]\((A \cap C)^{\prime}\)[/tex], we follow these steps:

1. Identify the universal set [tex]\(U\)[/tex] and the sets [tex]\(A\)[/tex] and [tex]\(C\)[/tex] given in the problem.

[tex]\[ U = \{1, 2, 3, 4, 5, 6, 7, 8\} \][/tex]
[tex]\[ A = \{2, 4, 7, 8\} \][/tex]
[tex]\[ C = \{3, 4, 5, 7, 8\} \][/tex]

2. Calculate the intersection of sets [tex]\(A\)[/tex] and [tex]\(C\)[/tex] ([tex]\(A \cap C\)[/tex]).

[tex]\[ A \cap C = \{4, 7, 8\} \][/tex]

3. Find the complement of the intersection set [tex]\((A \cap C)\)[/tex] with respect to the universal set [tex]\(U\)[/tex]. The complement [tex]\( (A \cap C)^{\prime} \)[/tex] is the set of elements that are in [tex]\(U\)[/tex] but not in [tex]\(A \cap C\)[/tex].

[tex]\[ (A \cap C)^{\prime} = U - (A \cap C) \][/tex]

Elements in [tex]\(U\)[/tex] that are not in [tex]\(A \cap C\)[/tex]:

[tex]\[ (A \cap C)^{\prime} = \{1, 2, 3, 5, 6\} \][/tex]

4. Thus, the set [tex]\( (A \cap C)^{\prime} \)[/tex] is:

[tex]\[ (A \cap C)^{\prime} = \{1, 2, 3, 5, 6\} \][/tex]

Select the correct choice:

A. [tex]\((A \cap C)^{\prime} = \{1, 2, 3, 5, 6\}\)[/tex]