Choose the equation that satisfies the data in the table.

[tex]\[
\begin{array}{c|c|c|c}
x & -3 & 0 & 3 \\
\hline
y & 0 & 2 & 4 \\
\end{array}
\][/tex]

A. [tex]\( y = \frac{2}{3} x + 2 \)[/tex]
B. [tex]\( y = \frac{3}{2} x + 4 \)[/tex]
C. [tex]\( y = -\frac{3}{2} x + 4 \)[/tex]
D. [tex]\( y = -\frac{2}{3} x + 2 \)[/tex]



Answer :

To determine which of the given equations satisfies the data in the table, we will substitute the [tex]\( x \)[/tex] values into each equation and compare the result with the corresponding [tex]\( y \)[/tex] values.

The table is as follows:
[tex]\[ \begin{array}{c|c|c|c} x & -3 & 0 & 3 \\ \hline y & 0 & 2 & 4 \end{array} \][/tex]

Let’s examine each equation one by one.

### Option A: [tex]\( y = \frac{2}{3} x + 2 \)[/tex]

Substitute [tex]\( x = -3 \)[/tex]:
[tex]\[ y = \frac{2}{3} \times (-3) + 2 = -2 + 2 = 0 \][/tex]
Substitute [tex]\( x = 0 \)[/tex]:
[tex]\[ y = \frac{2}{3} \times 0 + 2 = 0 + 2 = 2 \][/tex]
Substitute [tex]\( x = 3 \)[/tex]:
[tex]\[ y = \frac{2}{3} \times 3 + 2 = 2 + 2 = 4 \][/tex]

The [tex]\( y \)[/tex] values match the given table.

### Option B: [tex]\( y = \frac{3}{2} x + 4 \)[/tex]

Substitute [tex]\( x = -3 \)[/tex]:
[tex]\[ y = \frac{3}{2} \times (-3) + 4 = -4.5 + 4 = -0.5 \][/tex]
This does not match the [tex]\( y \)[/tex] value 0 for [tex]\( x = -3 \)[/tex], so Option B is incorrect.

### Option C: [tex]\( y = -\frac{3}{2} x + 4 \)[/tex]

Substitute [tex]\( x = -3 \)[/tex]:
[tex]\[ y = -\frac{3}{2} \times (-3) + 4 = 4.5 + 4 = 8.5 \][/tex]
This does not match the [tex]\( y \)[/tex] value 0 for [tex]\( x = -3 \)[/tex], so Option C is incorrect.

### Option D: [tex]\( y = -\frac{2}{3} x + 2 \)[/tex]

Substitute [tex]\( x = -3 \)[/tex]:
[tex]\[ y = -\frac{2}{3} \times (-3) + 2 = 2 + 2 = 4 \][/tex]
This does not match the [tex]\( y \)[/tex] value 0 for [tex]\( x = -3 \)[/tex], so Option D is incorrect.

Therefore, the correct equation that satisfies the given data is:

[tex]\[ \boxed{y = \frac{2}{3} x + 2} \][/tex]

Thus, the correct choice is [tex]\( \boxed{A} \)[/tex].