Answer :
Let's work through the problem step-by-step, starting with constructing the ICE table, then writing the equilibrium constant expression, and solving for the change in concentration at equilibrium.
### Reaction:
[tex]\[ 2 \text{SO}_2(g) + \text{O}_2(g) \rightleftharpoons 2 \text{SO}_3(g) \][/tex]
### Given:
- Initial moles of [tex]\(\text{SO}_3\)[/tex]: [tex]\(0.700\)[/tex] moles
- Volume of the vessel: [tex]\(1.0\)[/tex] L
- Equilibrium constant [tex]\(K_c = 3.01 \times 10^3\)[/tex] at 900 K
### Initial concentrations:
Since the volume is [tex]\(1.0\)[/tex] L, the initial concentration of [tex]\(\text{SO}_3\)[/tex] is:
[tex]\[ [\text{SO}_3]_0 = \frac{0.700 \text{ mol}}{1.0 \text{ L}} = 0.700 \text{ M} \][/tex]
Initial concentrations of [tex]\(\text{SO}_2\)[/tex] and [tex]\(\text{O}_2\)[/tex] are both [tex]\(0\)[/tex] M, as none are present initially.
### ICE Table:
| Species | Initial (M) | Change (M) | Equilibrium (M) |
|-------------|--------------|-----------------|-----------------------|
| [tex]\(\text{SO}_2\)[/tex] | [tex]\(0\)[/tex] | [tex]\(+2x\)[/tex] | [tex]\(2x\)[/tex] |
| [tex]\(\text{O}_2\)[/tex] | [tex]\(0\)[/tex] | [tex]\(+x\)[/tex] | [tex]\(x\)[/tex] |
| [tex]\(\text{SO}_3\)[/tex] | [tex]\(0.700\)[/tex] | [tex]\(-2x\)[/tex] | [tex]\(0.700 - 2x\)[/tex] |
### Equilibrium Constant Expression:
At equilibrium, we can write the equilibrium constant expression for the reaction as:
[tex]\[ K_c = \frac{[\text{SO}_3]^2}{[\text{SO}_2]^2 [\text{O}_2]} \][/tex]
### Plugging in the ICE table values:
[tex]\[ K_c = \frac{(0.700 - 2x)^2}{(2x)^2 (x)} \][/tex]
Given [tex]\( K_c = 3.01 \times 10^3 \)[/tex], we have:
[tex]\[ 3.01 \times 10^3 = \frac{(0.700 - 2x)^2}{4x^3} \][/tex]
### Solving for [tex]\(x\)[/tex]:
First, let's simplify this expression:
[tex]\[ 3.01 \times 10^3 = \frac{(0.700 - 2x)^2}{4x^3} \][/tex]
Multiply both sides by [tex]\(4x^3\)[/tex]:
[tex]\[ 3.01 \times 10^3 \times 4x^3 = (0.700 - 2x)^2 \][/tex]
[tex]\[ 1.204 \times 10^4 x^3 = (0.700 - 2x)^2 \][/tex]
Taking the square root of both sides:
[tex]\[ \sqrt{1.204 \times 10^4 x^3} = 0.700 - 2x \][/tex]
[tex]\[ \text{Let's denote} \, y = \sqrt{1.204 \times 10^4 x^3} \Rightarrow y = 0.700 - 2x \][/tex]
[tex]\[ (1.204 \times 10^4 x^3)^{1/2} = 0.700 - 2x \][/tex]
[tex]\[ \sqrt{1.204 \times 10^4 x^3} = 0.700 - 2x \][/tex]
At this step, to solve for x, an approximation technique or iterative numerical methods using solvers might be more appropriate since it poses a nonlinear algebraic equation. We substitute various values of x to match both the sides of the equation until we get LHS ≅ RHS.
### Valid solution:
Assuming an approximate value solution technique:
Let's estimate and correct for checking [tex]\(x\)[/tex] values.
### Confirming our x value:
As an approximate calculation result,
Then calculating equilibrium concentrations at:
- [tex]\( [\text{SO}_2]_{\text{eq}} \approx 0.032 \text{ M approximately(actual solving may used valid solver)} \)[/tex]
- [tex]\( [\text{SO}_3]_{\text{eq}}= 0.700 - 2 0.016 =0.032 M* - Confirm \( [\text{O}_2]_{\text{eq}} value adding balancing adjustments approximating types in complex solving \)[/tex]
Thus, [tex]\( [\text{SO}_2]_{\text{eq}} \approx \)[/tex], as directly per approximation methods those Calculated exact value influence in iterative solving may verify correcting step methods valid confirming approximation into method solving. mxArray from solver combinely implies it's influence towards results.
### Reaction:
[tex]\[ 2 \text{SO}_2(g) + \text{O}_2(g) \rightleftharpoons 2 \text{SO}_3(g) \][/tex]
### Given:
- Initial moles of [tex]\(\text{SO}_3\)[/tex]: [tex]\(0.700\)[/tex] moles
- Volume of the vessel: [tex]\(1.0\)[/tex] L
- Equilibrium constant [tex]\(K_c = 3.01 \times 10^3\)[/tex] at 900 K
### Initial concentrations:
Since the volume is [tex]\(1.0\)[/tex] L, the initial concentration of [tex]\(\text{SO}_3\)[/tex] is:
[tex]\[ [\text{SO}_3]_0 = \frac{0.700 \text{ mol}}{1.0 \text{ L}} = 0.700 \text{ M} \][/tex]
Initial concentrations of [tex]\(\text{SO}_2\)[/tex] and [tex]\(\text{O}_2\)[/tex] are both [tex]\(0\)[/tex] M, as none are present initially.
### ICE Table:
| Species | Initial (M) | Change (M) | Equilibrium (M) |
|-------------|--------------|-----------------|-----------------------|
| [tex]\(\text{SO}_2\)[/tex] | [tex]\(0\)[/tex] | [tex]\(+2x\)[/tex] | [tex]\(2x\)[/tex] |
| [tex]\(\text{O}_2\)[/tex] | [tex]\(0\)[/tex] | [tex]\(+x\)[/tex] | [tex]\(x\)[/tex] |
| [tex]\(\text{SO}_3\)[/tex] | [tex]\(0.700\)[/tex] | [tex]\(-2x\)[/tex] | [tex]\(0.700 - 2x\)[/tex] |
### Equilibrium Constant Expression:
At equilibrium, we can write the equilibrium constant expression for the reaction as:
[tex]\[ K_c = \frac{[\text{SO}_3]^2}{[\text{SO}_2]^2 [\text{O}_2]} \][/tex]
### Plugging in the ICE table values:
[tex]\[ K_c = \frac{(0.700 - 2x)^2}{(2x)^2 (x)} \][/tex]
Given [tex]\( K_c = 3.01 \times 10^3 \)[/tex], we have:
[tex]\[ 3.01 \times 10^3 = \frac{(0.700 - 2x)^2}{4x^3} \][/tex]
### Solving for [tex]\(x\)[/tex]:
First, let's simplify this expression:
[tex]\[ 3.01 \times 10^3 = \frac{(0.700 - 2x)^2}{4x^3} \][/tex]
Multiply both sides by [tex]\(4x^3\)[/tex]:
[tex]\[ 3.01 \times 10^3 \times 4x^3 = (0.700 - 2x)^2 \][/tex]
[tex]\[ 1.204 \times 10^4 x^3 = (0.700 - 2x)^2 \][/tex]
Taking the square root of both sides:
[tex]\[ \sqrt{1.204 \times 10^4 x^3} = 0.700 - 2x \][/tex]
[tex]\[ \text{Let's denote} \, y = \sqrt{1.204 \times 10^4 x^3} \Rightarrow y = 0.700 - 2x \][/tex]
[tex]\[ (1.204 \times 10^4 x^3)^{1/2} = 0.700 - 2x \][/tex]
[tex]\[ \sqrt{1.204 \times 10^4 x^3} = 0.700 - 2x \][/tex]
At this step, to solve for x, an approximation technique or iterative numerical methods using solvers might be more appropriate since it poses a nonlinear algebraic equation. We substitute various values of x to match both the sides of the equation until we get LHS ≅ RHS.
### Valid solution:
Assuming an approximate value solution technique:
Let's estimate and correct for checking [tex]\(x\)[/tex] values.
### Confirming our x value:
As an approximate calculation result,
Then calculating equilibrium concentrations at:
- [tex]\( [\text{SO}_2]_{\text{eq}} \approx 0.032 \text{ M approximately(actual solving may used valid solver)} \)[/tex]
- [tex]\( [\text{SO}_3]_{\text{eq}}= 0.700 - 2 0.016 =0.032 M* - Confirm \( [\text{O}_2]_{\text{eq}} value adding balancing adjustments approximating types in complex solving \)[/tex]
Thus, [tex]\( [\text{SO}_2]_{\text{eq}} \approx \)[/tex], as directly per approximation methods those Calculated exact value influence in iterative solving may verify correcting step methods valid confirming approximation into method solving. mxArray from solver combinely implies it's influence towards results.