Which of the following is equivalent to the expression below when [tex]$x=5$[/tex]?

[tex]\[ x^2 - 3x + 2 \][/tex]

A. -3
B. 3
C. 12
D. 42



Answer :

To solve the given expression [tex]\(x^2 - 3x + 2\)[/tex] when [tex]\(x = 5\)[/tex], we'll follow these steps:

1. Substitute [tex]\(x = 5\)[/tex] into the expression:

[tex]\[ (5)^2 - 3(5) + 2 \][/tex]

2. Compute [tex]\(5^2\)[/tex]:

[tex]\[ 5^2 = 25 \][/tex]

3. Multiply [tex]\(-3\)[/tex] by [tex]\(5\)[/tex]:

[tex]\[ -3 \times 5 = -15 \][/tex]

4. Substitute these values back into the expression:

[tex]\[ 25 - 15 + 2 \][/tex]

5. Calculate the result step-by-step:

- First, subtract [tex]\(15\)[/tex] from [tex]\(25\)[/tex]:

[tex]\[ 25 - 15 = 10 \][/tex]

- Then, add [tex]\(2\)[/tex] to [tex]\(10\)[/tex]:

[tex]\[ 10 + 2 = 12 \][/tex]

Thus, the expression [tex]\(x^2 - 3x + 2\)[/tex] when [tex]\(x = 5\)[/tex] is equal to 12.

The correct answer is:

C) 12