To solve the given expression [tex]\(x^2 - 3x + 2\)[/tex] when [tex]\(x = 5\)[/tex], we'll follow these steps:
1. Substitute [tex]\(x = 5\)[/tex] into the expression:
[tex]\[
(5)^2 - 3(5) + 2
\][/tex]
2. Compute [tex]\(5^2\)[/tex]:
[tex]\[
5^2 = 25
\][/tex]
3. Multiply [tex]\(-3\)[/tex] by [tex]\(5\)[/tex]:
[tex]\[
-3 \times 5 = -15
\][/tex]
4. Substitute these values back into the expression:
[tex]\[
25 - 15 + 2
\][/tex]
5. Calculate the result step-by-step:
- First, subtract [tex]\(15\)[/tex] from [tex]\(25\)[/tex]:
[tex]\[
25 - 15 = 10
\][/tex]
- Then, add [tex]\(2\)[/tex] to [tex]\(10\)[/tex]:
[tex]\[
10 + 2 = 12
\][/tex]
Thus, the expression [tex]\(x^2 - 3x + 2\)[/tex] when [tex]\(x = 5\)[/tex] is equal to 12.
The correct answer is:
C) 12