Which expression is equivalent to [tex]\frac{m-4}{m+4} \div (m+2)[/tex]?

A. [tex]\frac{m-4}{(m+4)(m+2)}[/tex]

B. [tex]\frac{(m+4)(m+2)}{m-4}[/tex]

C. [tex]\frac{(m-4)(m+2)}{m+4}[/tex]

D. [tex]\frac{m+4}{(m-4)(m+2)}[/tex]



Answer :

To find an expression equivalent to [tex]\(\frac{m-4}{m+4} \div (m+2)\)[/tex], follow these steps:

1. Convert Division by a Fraction to Multiplication:
Recall that division by a fraction is equivalent to multiplication by its reciprocal. Hence,
[tex]\[ \frac{m-4}{m+4} \div (m+2) = \frac{m-4}{m+4} \times \frac{1}{m+2} \][/tex]

2. Multiplication of Fractions:
When multiplying two fractions, multiply the numerators together and the denominators together:
[tex]\[ \frac{m-4}{m+4} \times \frac{1}{m+2} = \frac{(m-4) \times 1}{(m+4) \times (m+2)} = \frac{m-4}{(m+4)(m+2)} \][/tex]

Therefore, the expression [tex]\(\frac{m-4}{m+4} \div (m+2)\)[/tex] simplifies to [tex]\(\frac{m-4}{(m+4)(m+2)}\)[/tex].

Thus, the equivalent expression is:
[tex]\[ \boxed{\frac{m-4}{(m+4)(m+2)}} \][/tex]