Solve the compound inequality [tex]$6b \ \textless \ 42$[/tex] or [tex]$4b + 12 \ \textgreater \ 8$[/tex].

A. [tex]$b \ \textless \ 6$[/tex] or [tex]$b \ \textgreater \ 5$[/tex]
B. [tex]$b \ \textless \ 7$[/tex] or [tex]$b \ \textgreater \ -1$[/tex]
C. [tex]$b \ \textless \ 7$[/tex] or [tex]$b \ \textgreater \ 1$[/tex]
D. [tex]$b \ \textgreater \ 6$[/tex] or [tex]$b \ \textless \ 5$[/tex]



Answer :

To solve the compound inequality [tex]\(6b < 42\)[/tex] or [tex]\(4b + 12 > 8\)[/tex], let's tackle each inequality step-by-step.

1. Solve the first inequality [tex]\(6b < 42\)[/tex]:
- Divide both sides by 6 to isolate [tex]\(b\)[/tex]:

[tex]\[ b < \frac{42}{6} \][/tex]

- This simplifies to:

[tex]\[ b < 7 \][/tex]

2. Solve the second inequality [tex]\(4b + 12 > 8\)[/tex]:
- Start by isolating the term with [tex]\(b\)[/tex] on one side. Subtract 12 from both sides:

[tex]\[ 4b > 8 - 12 \][/tex]

- This simplifies to:

[tex]\[ 4b > -4 \][/tex]

- Now divide both sides by 4 to solve for [tex]\(b\)[/tex]:

[tex]\[ b > \frac{-4}{4} \][/tex]

- This simplifies to:

[tex]\[ b > -1 \][/tex]

So the solutions to the individual inequalities are:
- [tex]\(b < 7\)[/tex]
- [tex]\(b > -1\)[/tex]

When we combine these solutions using "or", we get:
[tex]\[ b < 7 \text{ or } b > -1 \][/tex]

Therefore, the correct answer is:
[tex]\[ b < 7 \text{ or } b > -1 \][/tex]