Cubes are three-dimensional shapes that have equal sides. What is the density of a cube that has a mass of 12.6 g and a side length of 4.1 cm?

(Density: [tex]$D=\frac{m}{v}$[/tex])

A. [tex]$0.1828 \, g/cm^3$[/tex]
B. [tex][tex]$0.3254 \, g/cm^3$[/tex][/tex]
C. [tex]$3.073 \, g/cm^3$[/tex]
D. [tex]$68.92 \, g/cm^3$[/tex]



Answer :

To determine the density of a cube given its mass and side length, follow these steps:

1. Understand the given data:
- Mass ([tex]\( m \)[/tex]) of the cube: 12.6 grams
- Side length of the cube ([tex]\( \text{side length} \)[/tex]): 4.1 centimeters

2. Calculate the volume of the cube:
The formula for the volume ([tex]\( V \)[/tex]) of a cube is given by:
[tex]\[ V = \text{side length}^3 \][/tex]
Plug in the side length:
[tex]\[ V = 4.1^3 \][/tex]
Evaluating this, we find:
[tex]\[ V \approx 68.921 \, \text{cm}^3 \][/tex]

3. Calculate the density:
Density ([tex]\( D \)[/tex]) is defined as mass ([tex]\( m \)[/tex]) divided by volume ([tex]\( V \)[/tex]):
[tex]\[ D = \frac{m}{V} \][/tex]
Substitute the values of mass and volume:
[tex]\[ D = \frac{12.6 \, \text{g}}{68.921 \, \text{cm}^3} \][/tex]
Performing the division, we get:
[tex]\[ D \approx 0.1828 \, \text{g/cm}^3 \][/tex]

4. Compare the calculated density with the given choices:
- [tex]\( 0.1828 \, \text{g/cm}^3 \)[/tex]
- [tex]\( 0.3254 \, \text{g/cm}^3 \)[/tex]
- [tex]\( 3.073 \, \text{g/cm}^3 \)[/tex]
- [tex]\( 68.92 \, \text{g/cm}^3 \)[/tex]

The calculated density, approximately [tex]\( 0.1828 \, \text{g/cm}^3 \)[/tex], matches one of the given choices:

[tex]\[ 0.1828 \, \text{g/cm}^3 \][/tex]

Thus, the correct answer is [tex]\( 0.1828 \, \text{g/cm}^3 \)[/tex].