4. Which of the following is an equivalent form of the compound inequality [tex]-22 \ \textgreater \ -5x - 7 \geq -3[/tex]?

A. [tex]-5x - 7 \ \textless \ -22[/tex] and [tex]-5x - 7 \geq -3[/tex]
B. [tex]-5x - 7 \ \textgreater \ -22[/tex] and [tex]-5x - 7 \geq -3[/tex]
C. [tex]-5x \ \textgreater \ -22[/tex] and [tex]-7 \geq -3[/tex]
D. [tex]-5x - 7 \ \textless \ -22[/tex] and [tex]-5x - 7 \leq -3[/tex]



Answer :

Sure, let's break down the compound inequality [tex]\(-22 > -5x - 7 \geq -3\)[/tex] to find its equivalent form.

Step 1: Split the compound inequality into two separate inequalities.
1. [tex]\(-22 > -5x - 7\)[/tex]
2. [tex]\(-5x - 7 \geq -3\)[/tex]

Step 2: Solve each inequality separately.

### Inequality 1: [tex]\(-22 > -5x - 7\)[/tex]
1. Add 7 to both sides:
[tex]\[ -22 + 7 > -5x \][/tex]
[tex]\[ -15 > -5x \][/tex]

2. Divide both sides by [tex]\(-5\)[/tex]. Remember that dividing by a negative number reverses the inequality sign:
[tex]\[ \frac{-15}{-5} < x \][/tex]
[tex]\[ 3 < x \][/tex]

This can be written as:
[tex]\[ x > 3 \][/tex]

### Inequality 2: [tex]\(-5x - 7 \geq -3\)[/tex]
1. Add 7 to both sides:
[tex]\[ -5x - 7 + 7 \geq -3 + 7 \][/tex]
[tex]\[ -5x \geq 4 \][/tex]

2. Divide both sides by [tex]\(-5\)[/tex]. Again, remember to reverse the inequality sign:
[tex]\[ \frac{-5x}{-5} \leq \frac{4}{-5} \][/tex]
[tex]\[ x \leq -\frac{4}{5} \][/tex]

Step 3: Combine the simplified inequalities to represent the solution.
- The solution to the first inequality is [tex]\(x > 3\)[/tex].
- The solution to the second inequality is [tex]\(x \leq -\frac{4}{5}\)[/tex].

So, the combined form, using the correct inequality symbols and line thresholds is:
[tex]\[ -5x - 7 < -22 \quad \text{and} \quad -5x - 7 \geq -3 \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{-5x-7 < -22 \text{ and } -5x-7 \geq -3} \][/tex]