Convert the following decimal fraction to the form [tex]$\frac{a}{b}$[/tex] where [tex]$a, b \in \mathbb{Z}$[/tex] and [tex]$b \neq 0$[/tex].

[tex]\[ 0.2\overline{3} \][/tex]



Answer :

To convert the repeating decimal [tex]\(0.2\overline{3}\)[/tex] to a fraction, we will use algebraic manipulation. Follow these steps:

1. Let [tex]\( x \)[/tex] be the repeating decimal:
[tex]\[ x = 0.23333\ldots \][/tex]

2. Multiply [tex]\( x \)[/tex] by 10 to shift the decimal point one place to the right:
[tex]\[ 10x = 2.3333\ldots \][/tex]

3. Now multiply [tex]\( x \)[/tex] by 100 to shift the repeating part:
[tex]\[ 100x = 23.3333\ldots \][/tex]

4. Subtract the equation [tex]\( 10x = 2.3333\ldots \)[/tex] from the equation [tex]\( 100x = 23.3333\ldots \)[/tex]:
[tex]\[ \begin{aligned} 100x - 10x &= 23.3333\ldots - 2.3333\ldots \\ 90x &= 21 \end{aligned} \][/tex]

5. Solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{21}{90} \][/tex]

6. Simplify the fraction [tex]\(\frac{21}{90}\)[/tex]:

Both 21 and 90 can be divided by their greatest common divisor (GCD), which is 3:
[tex]\[ \frac{21 \div 3}{90 \div 3} = \frac{7}{30} \][/tex]

Hence, the repeating decimal [tex]\( 0.2\overline{3} \)[/tex] converted to a fraction is:
[tex]\[ \boxed{\frac{7}{30}} \][/tex]