Answer :

Let's break down and solve the expression: [tex]\(6 \sqrt{20} + 2 \sqrt{240}\)[/tex].

1. Simplify the square roots:

- For [tex]\(\sqrt{20}\)[/tex]:
[tex]\[ \sqrt{20} = \sqrt{4 \cdot 5} = \sqrt{4} \cdot \sqrt{5} = 2 \sqrt{5} \][/tex]

- For [tex]\(\sqrt{240}\)[/tex]:
[tex]\[ \sqrt{240} = \sqrt{16 \cdot 15} = \sqrt{16} \cdot \sqrt{15} = 4 \sqrt{15} \][/tex]

2. Substitute the simplified roots back into the expression:

- Original expression:
[tex]\[ 6 \sqrt{20} + 2 \sqrt{240} \][/tex]

- Substitute [tex]\(\sqrt{20}\)[/tex] and [tex]\(\sqrt{240}\)[/tex]:
[tex]\[ 6 \sqrt{20} + 2 \sqrt{240} = 6 \cdot (2 \sqrt{5}) + 2 \cdot (4 \sqrt{15}) \][/tex]

3. Simplify each term:

- For [tex]\(6 \cdot 2 \sqrt{5}\)[/tex]:
[tex]\[ 6 \cdot 2 \sqrt{5} = 12 \sqrt{5} \][/tex]

- For [tex]\(2 \cdot 4 \sqrt{15}\)[/tex]:
[tex]\[ 2 \cdot 4 \sqrt{15} = 8 \sqrt{15} \][/tex]

4. Combine the terms:

- Combine [tex]\(12 \sqrt{5}\)[/tex] and [tex]\(8 \sqrt{15}\)[/tex]:
[tex]\[ 12 \sqrt{5} + 8 \sqrt{15} \][/tex]

5. Numerically approximate the result:

- Approximate [tex]\(\sqrt{5}\)[/tex] and [tex]\(\sqrt{15}\)[/tex]:
[tex]\[ \sqrt{5} \approx 2.236 \][/tex]
[tex]\[ \sqrt{15} \approx 3.873 \][/tex]

- Calculate each term:
[tex]\[ 12 \sqrt{5} \approx 12 \cdot 2.236 = 26.832 \][/tex]
[tex]\[ 8 \sqrt{15} \approx 8 \cdot 3.873 = 30.984 \][/tex]

- Combine the values to obtain the final result:
[tex]\[ 26.832 + 30.984 = 57.816 \][/tex]

Thus, the numerical approximation for the expression [tex]\(6 \sqrt{20} + 2 \sqrt{240}\)[/tex] is approximately [tex]\(57.816\)[/tex].