Choose the correct simplification of the expression [tex]$b^5 \cdot b^4$[/tex].

A. [tex]$b$[/tex]
B. [tex][tex]$b^9$[/tex][/tex]
C. [tex]$b^{20}$[/tex]
D. [tex]$b^{-1}$[/tex]



Answer :

Sure, let's simplify the expression [tex]\( b^5 \cdot b^4 \)[/tex] step by step.

When you multiply two exponential terms with the same base, you add their exponents. This is one of the properties of exponents. Here’s how it works:

1. Identify the base: Both terms have the same base [tex]\( b \)[/tex].

2. Add the exponents:
[tex]\[ b^5 \cdot b^4 = b^{5 + 4} \][/tex]

3. Perform the addition:
[tex]\[ 5 + 4 = 9 \][/tex]

4. Write the simplified form:
[tex]\[ b^5 \cdot b^4 = b^9 \][/tex]

Thus, the correct simplification of the expression [tex]\( b^5 \cdot b^4 \)[/tex] is [tex]\( b^9 \)[/tex].

So, the correct option is:
[tex]\[ \boxed{b^9} \][/tex]