Choose the correct simplification of the expression [tex]$(3x)^4$[/tex].

A. [tex]$81x^4$[/tex]
B. [tex][tex]$12x^5$[/tex][/tex]
C. [tex]$81x^5$[/tex]
D. [tex]$12x^4$[/tex]



Answer :

To simplify the expression [tex]\((3x)^4\)[/tex], we can use the property of exponents known as the power of a product property. This property states that [tex]\((a \cdot b)^m = a^m \cdot b^m\)[/tex].

Here are the steps to follow:

1. Identify the components:
The given expression is [tex]\((3x)^4\)[/tex], where [tex]\(3\)[/tex] is a constant and [tex]\(x\)[/tex] is a variable.

2. Apply the power to each component:
According to the power of a product property,
[tex]\[ (3x)^4 = 3^4 \cdot x^4 \][/tex]

3. Calculate [tex]\(3^4\)[/tex]:
To find [tex]\(3^4\)[/tex], multiply [tex]\(3\)[/tex] by itself 4 times:
[tex]\[ 3^4 = 3 \times 3 \times 3 \times 3 = 81 \][/tex]

4. Combine the results:
After raising both the constant and the variable to the power of 4, we get:
[tex]\[ 3^4 \cdot x^4 = 81 \cdot x^4 \][/tex]

Therefore, the correct simplification of the expression [tex]\((3x)^4\)[/tex] is:
[tex]\[ 81x^4 \][/tex]

The correct answer is [tex]\(\boxed{81x^4}\)[/tex].