5. Simplify [tex]\left(3xy^2\right)(4xy)(2xy)^3[/tex].

A. [tex]24x^3y^2[/tex]
B. [tex]24x^5y^6[/tex]
C. [tex]96x^5y^6[/tex]
D. [tex]96x^3y^3[/tex]



Answer :

To simplify the given expression [tex]\(\left(3 x y^2\right)(4 x y)(2 x y)^3\)[/tex], we will proceed step-by-step.

1. First, simplify the exponentiation:
[tex]\[ (2 x y)^3 = (2)^3 \cdot (x)^3 \cdot (y)^3 = 8 x^3 y^3 \][/tex]

So, the expression [tex]\((2 x y)^3\)[/tex] simplifies to [tex]\(8 x^3 y^3\)[/tex].

2. Now, combine all the terms:
[tex]\[ (3 x y^2)(4 x y)(8 x^3 y^3) \][/tex]

3. Calculate the product of the coefficients:
[tex]\[ 3 \cdot 4 \cdot 8 = 96 \][/tex]

4. Combine the powers of [tex]\(x\)[/tex]:
[tex]\[ x^1 \cdot x^1 \cdot x^3 = x^{1+1+3} = x^5 \][/tex]

5. Combine the powers of [tex]\(y\)[/tex]:
[tex]\[ y^2 \cdot y^1 \cdot y^3 = y^{2+1+3} = y^6 \][/tex]

6. Put it all together:
[tex]\[ 96 x^5 y^6 \][/tex]

Thus, the simplified form of the given expression [tex]\(\left(3 x y^2\right)(4 x y)(2 x y)^3\)[/tex] is [tex]\(\boxed{96 x^5 y^6}\)[/tex].