1. Find the product of [tex]2x^4(4x^2 + 3x + 1)[/tex]

A. [tex]8x^6 + 6x^5 + 2x^4[/tex]
B. [tex]8x^8 + 3x^4 + 2x^4[/tex]
C. [tex]2x^4 + 6x^5 + 8x^6[/tex]
D. [tex]6x^6 + 5x^5 + 3x^4[/tex]



Answer :

To find the correct product of [tex]\( 2x^4(4x^2 + 3x + 1) \)[/tex], let us follow a detailed, step-by-step approach.

1. Rewrite the expression:

We need to multiply the polynomial [tex]\( 4x^2 + 3x + 1 \)[/tex] by [tex]\( 2x^4 \)[/tex].

[tex]\[ 2x^4 (4x^2 + 3x + 1) \][/tex]

2. Distribute the [tex]\( 2x^4 \)[/tex] across each term inside the parentheses:

[tex]\[ 2x^4 \cdot 4x^2 + 2x^4 \cdot 3x + 2x^4 \cdot 1 \][/tex]

3. Multiply each term individually:

[tex]\[ = 2x^4 \cdot 4x^2 + 2x^4 \cdot 3x + 2x^4 \cdot 1 \][/tex]

[tex]\[ = 2 \cdot 4 \cdot x^{4+2} + 2 \cdot 3 \cdot x^{4+1} + 2 \cdot 1 \cdot x^4 \][/tex]

[tex]\[ = 8x^6 + 6x^5 + 2x^4 \][/tex]

So the product of [tex]\( 2x^4 (4x^2 + 3x + 1) \)[/tex] is [tex]\( 8x^6 + 6x^5 + 2x^4 \)[/tex].

From the given choices, the correct answer is:

[tex]\[ 8x^6 + 6x^5 + 2x^4 \][/tex]

The other options do not match this result.