2. Find the product of [tex]\((3x-4)(2x^2+2x-1)\)[/tex].

A. [tex]\(6x^3 + 2x^2 - 5x + 4\)[/tex]

B. [tex]\(6x^3 + 14x^2 - 11x + 4\)[/tex]

C. [tex]\(6x^3 - 14x^2 - 5x + 4\)[/tex]

D. [tex]\(6x^3 - 2x^2 - 11x + 4\)[/tex]



Answer :

To find the product of [tex]\((3x - 4)(2x^2 + 2x - 1)\)[/tex], we can follow these steps:

1. Expand the expression by distributing each term in the first polynomial to every term in the second polynomial.

2. Combine like terms.

Let's start with the expansion:

[tex]\[ (3x - 4)(2x^2 + 2x - 1) \][/tex]

First, distribute [tex]\(3x\)[/tex] to each term in [tex]\(2x^2 + 2x - 1\)[/tex]:

[tex]\[ 3x(2x^2) + 3x(2x) + 3x(-1) \][/tex]
[tex]\[ = 6x^3 + 6x^2 - 3x \][/tex]

Next, distribute [tex]\(-4\)[/tex] to each term in [tex]\(2x^2 + 2x - 1\)[/tex]:

[tex]\[ -4(2x^2) + (-4)(2x) + (-4)(-1) \][/tex]
[tex]\[ = -8x^2 - 8x + 4 \][/tex]

Now, combine these results:

[tex]\[ 6x^3 + 6x^2 - 3x - 8x^2 - 8x + 4 \][/tex]

Next, combine like terms:

[tex]\[ 6x^3 + (6x^2 - 8x^2) + (-3x - 8x) + 4 \][/tex]
[tex]\[ 6x^3 + (-2x^2) + (-11x) + 4 \][/tex]

The final simplified expression is:

[tex]\[ 6x^3 - 2x^2 - 11x + 4 \][/tex]

So, among the given options, this corresponds to:

[tex]\[ \boxed{6x^3 - 2x^2 - 11x + 4} \][/tex]