Answer :
Let's evaluate each expression one by one:
1. Expression A: [tex]\(3^2 + 3\)[/tex]
- First, calculate the power: [tex]\(3^2 = 9\)[/tex].
- Then, add 3: [tex]\(9 + 3 = 12\)[/tex].
2. Expression B: [tex]\(\left(1^2 \cdot 10\right) - 1\)[/tex]
- First, calculate the power: [tex]\(1^2 = 1\)[/tex].
- Then, multiply by 10: [tex]\(1 \cdot 10 = 10\)[/tex].
- Finally, subtract 1: [tex]\(10 - 1 = 9\)[/tex].
3. Expression C: [tex]\(\frac{1}{23}\)[/tex]
- Division yields a decimal: [tex]\(\frac{1}{23} \approx 0.043478260869565216\)[/tex].
Observing these calculations:
- Expression A evaluates to 12.
- Expression B evaluates to 9.
- Expression C evaluates to approximately 0.043478260869565216.
Since one of these expressions must be true according to the problem, and the correct answer is required, we observe:
The result is:
[tex]\[ 12 \][/tex]
Therefore, the correct answer is Expression A: [tex]\(3^2 + 3\)[/tex].
1. Expression A: [tex]\(3^2 + 3\)[/tex]
- First, calculate the power: [tex]\(3^2 = 9\)[/tex].
- Then, add 3: [tex]\(9 + 3 = 12\)[/tex].
2. Expression B: [tex]\(\left(1^2 \cdot 10\right) - 1\)[/tex]
- First, calculate the power: [tex]\(1^2 = 1\)[/tex].
- Then, multiply by 10: [tex]\(1 \cdot 10 = 10\)[/tex].
- Finally, subtract 1: [tex]\(10 - 1 = 9\)[/tex].
3. Expression C: [tex]\(\frac{1}{23}\)[/tex]
- Division yields a decimal: [tex]\(\frac{1}{23} \approx 0.043478260869565216\)[/tex].
Observing these calculations:
- Expression A evaluates to 12.
- Expression B evaluates to 9.
- Expression C evaluates to approximately 0.043478260869565216.
Since one of these expressions must be true according to the problem, and the correct answer is required, we observe:
The result is:
[tex]\[ 12 \][/tex]
Therefore, the correct answer is Expression A: [tex]\(3^2 + 3\)[/tex].