Perform the operation(s) and simplify completely.

[tex]\[ \left(7x^2 - 6x + 2\right) - \left(4x - 8\right) + \left(-6x^2 + 3x\right) \][/tex]

A. [tex]\(x^2 - 7x - 6\)[/tex]

B. [tex]\(x^2 - 13x + 10\)[/tex]

C. [tex]\(x^2 - 7x + 10\)[/tex]

D. [tex]\(13x^2 - 13x + 10\)[/tex]



Answer :

Let us simplify the expression step-by-step:

Given the expression:
[tex]\[ (7x^2 - 6x + 2) - (4x - 8) + (-6x^2 + 3x) \][/tex]

First, distribute the negative sign through the second term:
[tex]\[ (7x^2 - 6x + 2) - 4x + 8 + (-6x^2 + 3x) \][/tex]

Now, combine like terms:
- The [tex]\(x^2\)[/tex] terms:
[tex]\[ 7x^2 - 6x^2 = x^2 \][/tex]

- The [tex]\(x\)[/tex] terms:
[tex]\[ -6x - 4x + 3x = -7x \][/tex]

- The constant terms:
[tex]\[ 2 + 8 = 10 \][/tex]

Putting it all together, we get:
[tex]\[ x^2 - 7x + 10 \][/tex]

So, the fully simplified expression is:
[tex]\[ x^2 - 7x + 10 \][/tex]

Thus, the correct answer is:
[tex]\[ x^2 - 7x + 10 \][/tex]