Answer :

Sure, let's simplify the expression [tex]\(3b + 5a - 9b - 2a\)[/tex] step by step.

1. Combine like terms:

The like terms involving [tex]\(b\)[/tex] are [tex]\(3b\)[/tex] and [tex]\(-9b\)[/tex].

The like terms involving [tex]\(a\)[/tex] are [tex]\(5a\)[/tex] and [tex]\(-2a\)[/tex].

2. Add/Subtract the coefficients of the like terms:

- For [tex]\(b\)[/tex], combine [tex]\(3b\)[/tex] and [tex]\(-9b\)[/tex].
[tex]\[ 3b - 9b = (3 - 9)b = -6b \][/tex]

- For [tex]\(a\)[/tex], combine [tex]\(5a\)[/tex] and [tex]\(-2a\)[/tex].
[tex]\[ 5a - 2a = (5 - 2)a = 3a \][/tex]

3. Write the simplified expression:
[tex]\[ -6b + 3a \][/tex]

So, the simplified form of the expression [tex]\(3b + 5a - 9b - 2a\)[/tex] is [tex]\(-6b + 3a\)[/tex].