Sure, let's simplify the expression [tex]\(3b + 5a - 9b - 2a\)[/tex] step by step.
1. Combine like terms:
The like terms involving [tex]\(b\)[/tex] are [tex]\(3b\)[/tex] and [tex]\(-9b\)[/tex].
The like terms involving [tex]\(a\)[/tex] are [tex]\(5a\)[/tex] and [tex]\(-2a\)[/tex].
2. Add/Subtract the coefficients of the like terms:
- For [tex]\(b\)[/tex], combine [tex]\(3b\)[/tex] and [tex]\(-9b\)[/tex].
[tex]\[
3b - 9b = (3 - 9)b = -6b
\][/tex]
- For [tex]\(a\)[/tex], combine [tex]\(5a\)[/tex] and [tex]\(-2a\)[/tex].
[tex]\[
5a - 2a = (5 - 2)a = 3a
\][/tex]
3. Write the simplified expression:
[tex]\[
-6b + 3a
\][/tex]
So, the simplified form of the expression [tex]\(3b + 5a - 9b - 2a\)[/tex] is [tex]\(-6b + 3a\)[/tex].