Select the best answer for the question.

What is [tex]$1^2 / 3$[/tex] as an improper fraction?

A. [tex]$8 / 3$[/tex]

B. [tex][tex]$5 / 3$[/tex][/tex]

C. [tex]$6 / 3$[/tex]

D. [tex]$2 / 3$[/tex]



Answer :

To solve the question of converting [tex]\(1^2 / 3\)[/tex] into an improper fraction, let's go through the steps together.

1. Calculate [tex]\(1^2\)[/tex]:
[tex]\[ 1^2 = 1 \][/tex]

2. Consider the fraction [tex]\(1 / 3\)[/tex]:
Here, our numerator is the result of [tex]\(1^2\)[/tex], which is 1, and the denominator is given as 3.

3. Form the improper fraction:
[tex]\[ \frac{1}{3} \][/tex]

Thus, the improper fraction for [tex]\(1^2 / 3\)[/tex] is [tex]\(\frac{1}{3}\)[/tex].

Looking at our options:
A. [tex]\(\frac{8}{3}\)[/tex]
B. [tex]\(\frac{5}{3}\)[/tex]
C. [tex]\(\frac{6}{3}\)[/tex]
D. [tex]\(\frac{2}{3}\)[/tex]

None of these options match our result directly as an improper fraction. Hence, if the question refers to [tex]\(\frac{1^2}{3}\)[/tex] as a simple fraction:
None of the options given above is correct for the problem [tex]\(1^2 / 3\)[/tex].