Answer :
Certainly! Let's analyze the data given for the seasonal temperatures and determine how the mean temperature changed between the two cold seasons.
1. List of temperatures for each season:
- For the 2011-2012 season: [tex]\( 61.1^\circ F, 51.9^\circ F, 53.6^\circ F, 56.5^\circ F \)[/tex]
- For the 2012-2013 season: [tex]\( 64.2^\circ F, 56.8^\circ F, 48.3^\circ F, 55.1^\circ F \)[/tex]
2. Calculate the mean temperature for each season:
- For the 2011-2012 season:
[tex]\[ \text{Mean of 2011-2012} = \frac{61.1 + 51.9 + 53.6 + 56.5}{4} = 55.775^\circ F \][/tex]
- For the 2012-2013 season:
[tex]\[ \text{Mean of 2012-2013} = \frac{64.2 + 56.8 + 48.3 + 55.1}{4} = 56.1^\circ F \][/tex]
3. Determine the change in mean temperature:
- Subtract the mean temperature of the 2011-2012 season from the mean temperature of the 2012-2013 season:
[tex]\[ \text{Change in mean temperature} = 56.1^\circ F - 55.775^\circ F = 0.325^\circ F \][/tex]
Based on the analysis:
- The mean temperature went up by approximately [tex]\( 0.3^\circ F \)[/tex].
- Therefore, the correct answer is:
- B. went up by [tex]\( 0.3^\circ \)[/tex]
1. List of temperatures for each season:
- For the 2011-2012 season: [tex]\( 61.1^\circ F, 51.9^\circ F, 53.6^\circ F, 56.5^\circ F \)[/tex]
- For the 2012-2013 season: [tex]\( 64.2^\circ F, 56.8^\circ F, 48.3^\circ F, 55.1^\circ F \)[/tex]
2. Calculate the mean temperature for each season:
- For the 2011-2012 season:
[tex]\[ \text{Mean of 2011-2012} = \frac{61.1 + 51.9 + 53.6 + 56.5}{4} = 55.775^\circ F \][/tex]
- For the 2012-2013 season:
[tex]\[ \text{Mean of 2012-2013} = \frac{64.2 + 56.8 + 48.3 + 55.1}{4} = 56.1^\circ F \][/tex]
3. Determine the change in mean temperature:
- Subtract the mean temperature of the 2011-2012 season from the mean temperature of the 2012-2013 season:
[tex]\[ \text{Change in mean temperature} = 56.1^\circ F - 55.775^\circ F = 0.325^\circ F \][/tex]
Based on the analysis:
- The mean temperature went up by approximately [tex]\( 0.3^\circ F \)[/tex].
- Therefore, the correct answer is:
- B. went up by [tex]\( 0.3^\circ \)[/tex]