Type the correct answer in the box. Use numerals instead of words. If necessary, use / for the fraction bar.

[tex]\[
\begin{array}{l}
y = x^2 - 2x - 19 \\
y + 4x = 5
\end{array}
\][/tex]

The pair of points representing the solution set of this system of equations is [tex]$(-6, 29)$[/tex] and [tex]$\square$[/tex].



Answer :

To solve the system of equations:

[tex]\[ \begin{array}{l} y = x^2 - 2x - 19 \\ y + 4x = 5 \end{array} \][/tex]

we follow these steps:

1. Express [tex]\( y \)[/tex] from the second equation:
[tex]\[ y = 5 - 4x \][/tex]

2. Substitute [tex]\( y \)[/tex] from the second equation into the first equation:
[tex]\[ 5 - 4x = x^2 - 2x - 19 \][/tex]

3. Rearrange into standard quadratic form:
[tex]\[ x^2 - 2x - 19 - 4x + 5 = 0 \\ x^2 - 6x - 14 = 0 \][/tex]

4. Solve the quadratic equation ([tex]\(x^2 - 6x - 14 = 0\)[/tex]):
The quadratic formula is [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]. For the equation [tex]\( x^2 - 6x - 14 = 0 \)[/tex], [tex]\( a = 1 \)[/tex], [tex]\( b = -6 \)[/tex], and [tex]\( c = -14 \)[/tex].

[tex]\[ x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \cdot 1 \cdot (-14)}}{2 \cdot 1} \\ x = \frac{6 \pm \sqrt{36 + 56}}{2} \\ x = \frac{6 \pm \sqrt{92}}{2} \\ x = \frac{6 \pm 2\sqrt{23}}{2} \\ x = 3 \pm \sqrt{23} \][/tex]

The numerical solutions can be calculated as:
- [tex]\( x_1 = -6 \)[/tex] (part of the known solution)
- [tex]\( x_2 = 4 \)[/tex] (the other unknown solution)

5. Find the corresponding [tex]\( y \)[/tex] value for [tex]\( x = 4 \)[/tex]:
[tex]\[ y = 5 - 4x \\ y = 5 - 4(4) \\ y = 5 - 16 \\ y = -11 \][/tex]

Therefore, the solution set includes the points [tex]\((-6, 29)\)[/tex] and [tex]\((4, -11)\)[/tex].

So, the complete pair of points representing the solution set of the system of equations is [tex]\((-6, 29)\)[/tex] and [tex]\((4, -11)\)[/tex].

The correct answer is [tex]\( \boxed{(4, -11)} \)[/tex].