Rewrite the following expression so that it is easier to read. Fix any grammar or spelling errors. Remove phrases that are not part of the expression. Do not remove or change LaTeX formatting. Do not change or remove [tex] [/tex] tags. Do not translate the expression or any part of the expression. If the expression is nonsense, rewrite it so that it makes sense.
-----
[tex]$\frac{-10}{-14}=\frac{16x}{-14} \\ 6x+6(x+6)=96$[/tex]
-----

Response:
[tex]\[
\frac{-10}{-14} = \frac{16x}{-14} \\
6x + 6(x + 6) = 96
\][/tex]



Answer :

Let's solve each equation step-by-step.

### First Equation:
[tex]\[ \frac{-10}{-14} = \frac{16x}{-14} \][/tex]

1. Simplify both sides:
[tex]\[ \frac{-10}{-14} \quad \text{simplifies to} \quad \frac{10}{14} = \frac{5}{7} \][/tex]
[tex]\[ \frac{16x}{-14} \quad \text{simplifies to} \quad \frac{-16x}{14} = -\frac{8x}{7} \][/tex]

Thus, the equation now is:
[tex]\[ \frac{5}{7} = -\frac{8x}{7} \][/tex]

2. To get rid of the denominators, multiply both sides by 7:
[tex]\[ 5 = -8x \][/tex]

3. Solve for [tex]\(x\)[/tex]:
[tex]\[ x = -\frac{5}{8} \][/tex]

4. Simplifying gives us:
[tex]\[ x = -0.625 \][/tex]

So, the solution to the first equation is:
[tex]\[ x = -0.625 \][/tex]

### Second Equation:
[tex]\[ 6x + 6(x + 6) = 96 \][/tex]

1. Distribute the 6 on the left side:
[tex]\[ 6x + 6x + 36 = 96 \][/tex]

2. Combine like terms:
[tex]\[ 12x + 36 = 96 \][/tex]

3. Subtract 36 from both sides to isolate the term with [tex]\(x\)[/tex]:
[tex]\[ 12x = 60 \][/tex]

4. Solve for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{60}{12} \][/tex]
[tex]\[ x = 5 \][/tex]

Thus, the solution to the second equation is:
[tex]\[ x = 5 \][/tex]

### Summary:
The solutions to the given system of equations are:
[tex]\[ x = -0.625 \quad \text{(from the first equation)} \][/tex]
[tex]\[ x = 5 \quad \text{(from the second equation)} \][/tex]