Compute the missing data in the table for the following exponential function [tex]$f(x)=(1.01)^x$[/tex]. Round your answer to the nearest tenths place.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
[tex]$x$[/tex] & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
[tex]$f(x)$[/tex] & [tex]$?$[/tex] & 1.01 & 1.02 & 1.03 & 1.04 & 1.05 & 1.06 \\
\hline
\end{tabular}

Please select the best answer from the choices provided:

A. 0
B. 1.01
C. 1.001
D. 1



Answer :

To fill in the missing value for [tex]\( f(x) \)[/tex] at [tex]\( x = 0 \)[/tex] in the given table, we need to evaluate the exponential function [tex]\( f(x) = (1.01)^x \)[/tex] at [tex]\( x = 0 \)[/tex].

Step-by-Step Solution:

1. Start with the exponential function:
[tex]\[ f(x) = (1.01)^x \][/tex]

2. Substitute [tex]\( x = 0 \)[/tex] into the function:
[tex]\[ f(0) = (1.01)^0 \][/tex]

3. Any number raised to the power of 0 is 1:
[tex]\[ (1.01)^0 = 1 \][/tex]

Therefore, the value of [tex]\( f(0) \)[/tex] is 1.

Given the choices:
a. 0
b. 1.01
c. 1.001
d. 1

The correct choice is:
D