Which of the following could be the ratio between the lengths of the two legs of a 30-60-90 triangle?

Check all that apply.
A. [tex]\sqrt{2} : \sqrt{3}[/tex]
B. [tex]\sqrt{3} : \sqrt{3}[/tex]
C. [tex]1 : \sqrt{2}[/tex]
D. [tex]\sqrt{2} : \sqrt{2}[/tex]
E. [tex]1 : \sqrt{3}[/tex]
F. [tex]2 \sqrt{5} : 6[/tex]



Answer :

To determine which of the given ratios could be the ratio between the lengths of the two legs of a 30-60-90 triangle, let's recall the properties of a 30-60-90 triangle. For such a triangle, the sides are in the ratio [tex]\(1 : \sqrt{3} : 2\)[/tex], where the shortest side is opposite the 30 degrees, the side opposite the 60 degrees is [tex]\(\sqrt{3}\)[/tex] times the shortest side, and the hypotenuse is 2 times the shortest side.

Now, let's analyze each given option to see if the ratio matches [tex]\(1 : \sqrt{3}\)[/tex].

Option A: [tex]\(\sqrt{2} : \sqrt{3}\)[/tex]

The ratio here is [tex]\(\sqrt{2} / \sqrt{3}\)[/tex].

If we simplify the ratio:
[tex]\[ \frac{\sqrt{2}}{\sqrt{3}} = \sqrt{\frac{2}{3}} \][/tex]

This does not match the [tex]\(1 : \sqrt{3}\)[/tex] ratio expected in a 30-60-90 triangle.

Option B: [tex]\(\sqrt{3} : \sqrt{3}\)[/tex]

The ratio here is [tex]\(\sqrt{3} / \sqrt{3}\)[/tex], which simplifies to:
[tex]\[ \frac{\sqrt{3}}{\sqrt{3}} = 1 \][/tex]

This matches the [tex]\(1 : \sqrt{3}\)[/tex] ratio.

Option C: [tex]\(1 : \sqrt{2}\)[/tex]

The ratio here is [tex]\(1 / \sqrt{2}\)[/tex].
[tex]\[ \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \][/tex]

This does not match the [tex]\(1 : \sqrt{3}\)[/tex] ratio.

Option D: [tex]\(\sqrt{2} : \sqrt{2}\)[/tex]

The ratio here is [tex]\(\sqrt{2} / \sqrt{2}\)[/tex], which simplifies to:
[tex]\[ \frac{\sqrt{2}}{\sqrt{2}} = 1 \][/tex]

This matches the [tex]\(1 : \sqrt{3}\)[/tex] ratio.

Option E: [tex]\(1 : \sqrt{3}\)[/tex]

The ratio here is [tex]\(1 / \sqrt{3}\)[/tex]:
[tex]\[ \frac{1}{\sqrt{3}} \][/tex]

This exactly matches the [tex]\(1 : \sqrt{3}\)[/tex] ratio.

Option F: [tex]\(2\sqrt{5} : 6\)[/tex]

The ratio here is [tex]\(2\sqrt{5} / 6\)[/tex]:
[tex]\[ \frac{2\sqrt{5}}{6} = \frac{\sqrt{5}}{3} \][/tex]

This does not match the [tex]\(1 : \sqrt{3}\)[/tex] ratio.

Based on the above analysis, the ratios that match the ratio between the lengths of the two legs of a 30-60-90 triangle are:

- Option B: [tex]\(\sqrt{3} : \sqrt{3}\)[/tex]
- Option D: [tex]\(\sqrt{2} : \sqrt{2}\)[/tex]
- Option E: [tex]\(1 : \sqrt{3}\)[/tex]

Thus, the correct options are B, D, and E.